	Conclusion

Mixture of experts to combine clinical factors and gene markers

Kim-Anh Lê Cao

ARC Centre of Excellence in Bioinformatics & Queensland Facility for Advanced Bioinformatics The University of Queensland

Kim-Anh Lê Cao

Combining clinical and genetic markers

Biometrics on the Lake 2009

Motivation		Conclusion
0000		
Background		

Microarray vs. clinical data

Microarray data

- generate insight into cell biology
- identify marker genes to predict prognosis
- complex and noisy nature
- few validated biomarkers

Clinical factors

- valuable information
- Iow noise level
- used as prognosis factors but considered not sufficient to predict patient outcome

Biometrics on the Lake 2009

Kim-Anh Lê Cao

Motivation		Conclusion
00000		
Background		

Aim

Clinical data and gene expression data both contain complementary information for cancer prognosis and therapeutic targeting.

Integrating both types of data:

 \rightarrow may lead to a more powerful prognosis prediction (improvement in the accuracy)

 \rightarrow may help reduce the number of marker genes to reliably predict the prognosis.

Motivation		Conclusion
00000		
Challenges		

Statistical challenges

Clinical variables often are

- categorical
- heterogeneous (ER +/- status, histological grade, age, ...)

Biometrics on the Lake 2009

Gene expression variables are

- continuous variables
- homogeneous
- \rightarrow not easily combined in a classification approach !

Motivation		Conclusion
00000		
Approach		

Related litterature

Few statistical methodologies proposed and little success so far ...

e.g. on Van't Veer breast cancer data set:

Edén et al. (ANN, 2004), Dettling and Buhlmann* (2004, PELORA), Boulesteix et al.* (2008, PLS-RF)

Biometrics on the Lake 2009

Gevaert et al. (2006, Bayesian networks)

Sun et al. (2007, I-RELIEF)

- \rightarrow depends on the statistical approach
- \rightarrow depends on the data set
- \rightarrow few approaches deal with *categorical* clinical factors (*)

Motivation		Conclusion
00000		
Approach		

Integrative Mixture of Experts

- Select the relevant genes
- 2 Combine both types of variables using mixture of experts

Biometrics on the Lake 2009

- 3 Assess the biological relevance of the selected genes
- \rightarrow Application to three cancer data sets

Kim-Anh Lê Cao

	Method ●oooo	Conclusion
Gene selection		

Gene selection

Genes are selected based on the outcome status using 10 fold cross-validation with three types of gene selection procedures:

- univariate filter approach: t-test
- wrapper approach: Random Forests (Breiman, 2001)
- sparse PLS-DA (sPLS, Lê Cao et al., 2008, 2009a, integrOmics, 2009b)

	Method	Conclusion
	0000	
Mixture of Experts		

Mixture of Experts

Mixture of experts models (ME, Jacobs et al., 1991)

- account for nonlinearities and other complexities in the data
- based on a divide-and-conquer strategy
- wide applicability
- advantages of fast learning via EM algorithm

Mixture of Experts were improved

- for classification problems (Ng & McLachlan, 2007)
- integrative ME: deals with categorical and continuous variables together (Ng & McLachlan, 2008)

	Method ○○●○○	Conclusion
Mixture of Experts		

Mixture of Experts

Both experts and gating networks receive w_j as input. Final output is a linear combination of the expert and gating networks' outputs.

Biometrics on the Lake 2009

Kim-Anh Lê Cao

	Method ○○○●○	Conclusion
Mixture of Experts		

Mixture of Experts

Expert network: each input is modeled via a Bernoulli distribution

$$f_h^{\mathcal{E}}(y_j|\boldsymbol{w}_j;\boldsymbol{\beta}_h) = \left(\frac{\exp(\boldsymbol{\beta}_h^{\mathsf{T}}\boldsymbol{w}_j)}{1 + \exp(\boldsymbol{\beta}_h^{\mathsf{T}}\boldsymbol{w}_j)}\right)^{y_j} \left(\frac{1}{\exp(\boldsymbol{\beta}_h^{\mathsf{T}}\boldsymbol{w}_j)}\right)^{(1-y_j)}$$

 Gating network: different types of gating functions are proposed

$$g_h(\boldsymbol{w}_j; \boldsymbol{\pi}_h, \boldsymbol{\alpha}_h) = \frac{\boldsymbol{\pi}_h f_h^G(\boldsymbol{w}_j; \boldsymbol{\alpha}_h)}{\sum_{l=1}^H \boldsymbol{\pi}_l f_l^G(\boldsymbol{w}_j; \boldsymbol{\alpha}_h)}$$

Final output: weighted sum of all the local output vectors produced by the experts and the gating network

$$f(\mathbf{y}|\mathbf{w};\mathbf{\Psi}) = \sum_{h=1}^{H} g_h(\mathbf{w};\pi_h,\alpha_h) f_h^E(\mathbf{y}|\mathbf{w};\boldsymbol{\beta}_h)$$

Biometrics on the Lake 2009

Kim-Anh Lê Cao

	Method	Conclusion
	00000	
Mixture of Experts		

Application of Mixture of Experts

Gating function

$$g_h(\boldsymbol{w}_j; \boldsymbol{\pi}_h, \boldsymbol{\alpha}_h) = \frac{\boldsymbol{\pi}_h f_h^G(\boldsymbol{w}_j; \boldsymbol{\alpha}_h)}{\sum_{l=1}^H \boldsymbol{\pi}_l f_l^G(\boldsymbol{w}_j; \boldsymbol{\alpha}_h)}$$

Multinomial logit model

- Independent model (Ng & McLachlan, 2008)?
- Location model (Hunt & Jorgensen, 1999)

\rightarrow fitted with EM algorithm

	Results ●00000	Conclusion
Data sets		

Data sets

	р	q	No. of Samples		Ref.
			class 0	class 1	
Prostate	7,884	8	37 (rec)	42 (no rec)	Stephenson et al. (2005)
Breast	5,537	8	75 (rec)	181 (no rec)	van de Vivjer et al. (2002)
CNS	7,128	5	21 (dead)	39 (alive)	Pomeroy et al. (2002)

p: the number of transcripts, q: the number of clinical factors.

 \rightarrow careful use of cross-validation during gene selection step

 \rightarrow integrative ME is learnt on a training set and prediction is evaluated on a test set

	Results	Conclusion
	00000	
Classification performance		

Assessing additional predictive value

- On the gene expression data alone Wrapper approaches perform internal variable selection:
 - Recursive Feature Elimination (RFE, Guyon et al. 2002)
 - Nearest Schrunken Centroids (NSC, Tibshirani et al. 2002)

Biometrics on the Lake 2009

- Random Forests (RF, Breiman 2001)
- 2 On the clinical data alone
 - Logistic regression
- 3 On gene expression and clinical data Integrative ME with different gating functions:
 - Multinomial logit
 - Location model

Kim-Anh Lê Cao

	Results 00000	Conclusion
Classification performance		

Error rate estimation: ME + t-test

	Results 000●00	Conclusion
Classification performance		

In a nutshell

- integrative ME is more accurate than clinical variables alone
- integrative ME is often more accurate than microarray data alone especially when the number of genes is small
- performance also depends on the data set

Link with biology ?

- Is the proposed hybrid signature biologically relevant ?
- Is there any difference between the gene selection procedures ?

	Results	Conclusion
	000000	
Biological relevance		

Biological relevance: Prostate & Breast cancers

	Gene Name	Symbol	Level	Gene selection	Link to cancer
				method [rank]	
	Etoposide induced 2.4 mRNA	EI24	+	<i>t</i> -test[1], RF[1],	Gu et al. (2000); Zhao et al. (2005)
ate				sPLS[1]	
sta	Erythrocyte membrane protein	EPB49	-	t-test[2], sPLS[1]	Lutchman et al. (1999)
Pr	band 4.9				
	Chromatin modifying protoin 1A	CHMD1A		t toot[5] DE[9]	I = 1 (2008)
	Chromatin modifying protein TA	UNITIA	-	t-test[5], $nr[2]$,	Li et al. (2008)
				SF L5[0]	
	Asparagine synthetase	ASNS	+	RF[4]	Richards and Kilberg (2006); Estes
					et al. (2007)
	Prothymosin, alpha	PTMA	+	RF[5]	Suzuki et al. (2006)
	Insulin-like growth factor binding	IGFBP5	+	<i>t</i> -test[1,3],	Nishidate et al. (2004); van't Veer et al.
ast	protein 5			RF[5,8,13],	(2002); Li et al. (2007); Mita et al.
Bre				sPLS[1,3]	(2007)
	Phosphoglycerate mutase 1	PGK1	+	<i>t</i> -test[2], RF[11],	Duan et al. (2002); Hwang et al. (2006);
				sPLS[2]	Zhang et al. (2005); Zieker et al. (2008)
	Protein regulator of cytokinesis 1	PRC1	+	t-test[5], RF[12],	Shimo et al. (2007)
				sPLS[5]	× ,
	E2F transcription factor 1	E2F1	+	<i>t</i> -test[13]	Zhang et al. (2000); Vuaroqueaux et al.
	• • • • • • • • • • • • • • • • • • •				(2007)
	Adrenomedullin	ADM	+	RF[6]	Oehler et al. (2003)

Kim-Anh Lê Cao

Biometrics on the Lake 2009

	Results	Conclusion
	000000	
Biological relevance		

Biological relevance: CNS cancer

	Gene Name	Symbol	Level	Gene selection	Link to cancer
				method [rank]	
	High mobility group AT-hook 1	HMGA1	+	<i>t</i> -test[2], RF[8],	Liau et al. (2008)
NS				sPLS[2]	
5	V-myb myeloblastosis viral onco-	MYBL2	+	t-test[6]	Raschella et al. (1999)
	gene homolog (avian)-like 2				
	Carcinoembryonic antigen-	CEACAM6	+	RF[2]	Maraga et al. (2008)
	related cell adhesion molecule	0			
	6				
	Descharge land and familie and	DL-C		-DI C[9]	Decision et al. (2000)
	Ras homolog gene family, mem-	RhoC	+	sPLS[3]	Boone et al. (2009)
	ber C				
	Heat shock 70kDa protein 9	HSPA9	+	RF[4]	Dundas et al. (2005)

Different gene selection approaches often highlight different genes

- \rightarrow relevant and complementary information
- \rightarrow potential biomarkers need to be further validated

Kim-Anh Lê Cao

Biometrics on the Lake 2009

Conclusion

- Noisy characteristic of gene expression data can be compensated by clinical variables
- Both types of variables are useful to predict cancer prognosis
- Integrative ME is a sound approach and can deal with continuous and categorical variables
- Biologically relevant results were obtained
- R package integrativeME
- Improvements with larger-scale studies involving the records of a larger number of clinical variables

Biometrics on the Lake 2009

	Conclusion

Acknowledgements

Prof. Geoff. McLachlan Dr. Emmanuelle Meugnier Dr. Shu-Kay Ng Univ. QLD Univ. Lyon Griffith University

Australian Government Australian Research Council

Merci pour votre attention !

k.lecao@uq.edu.au

Biometrics on the Lake 2009

< 17 ▶

Kim-Anh Lê Cao