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Background

Microarray vs. clinical data
Microarray data

generate insight into cell biology
identify marker genes to predict prognosis

complex and noisy nature

few validated biomarkers

Clinical factors

m valuable information
m low noise level

m used as prognosis factors but considered
not sufficient to predict patient outcome
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Background

Clinical data and gene expression data both contain complementary
information for cancer prognosis and therapeutic targeting.

Integrating both types of data:

— may lead to a more powerful prognosis prediction (improvement
in the accuracy)

— may help reduce the number of marker genes to reliably predict
the prognosis.
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Challenges

Statistical challenges

Clinical variables often are
m categorical
m heterogeneous (ER +/- status, histological grade, age, ...)

Gene expression variables are
m continuous variables

m homogeneous

— not easily combined in a classification approach !
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Approach

Related litterature

Few statistical methodologies proposed and little success so far ...
e.g. on Van' t Veer breast cancer data set:

@ Edén et al. (ANN, 2004), Dettling and Buhlmann* (2004,
PELORA), Boulesteix et al.* (2008, PLS-RF)

' Gevaert et al. (2006, Bayesian networks)

= Sun et al. (2007, I-RELIEF)

— depends on the statistical approach
— depends on the data set
— few approaches deal with categorical clinical factors (*)
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Approach

Integrative Mixture of Experts

Select the relevant genes
Combine both types of variables using mixture of experts

Assess the biological relevance of the selected genes

— Application to three cancer data sets
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Gene selection

Gene selection

Genes are selected based on the outcome status using 10 fold
cross-validation with three types of gene selection procedures:

m univariate filter approach: t-test
m wrapper approach: Random Forests (Breiman, 2001)

m sparse PLS-DA (sPLS, Lé Cao et al., 2008, 2009a,
integrOmics, 2009b)
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Mixture of Experts

Mixture of experts models (ME, Jacobs et al., 1991)
m account for nonlinearities and other complexities in the data
m based on a divide-and-conquer strategy
m wide applicability

m advantages of fast learning via EM algorithm

Mixture of Experts were improved
m for classification problems (Ng & McLachlan, 2007)

m integrative ME: deals with categorical and continuous
variables together (Ng & McLachlan, 2008)
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Mixture of Experts

Output
PN y;: outcome of patient j

Xj: gene signature
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Both experts and gating networks receive w; as input.
Final output is a linear combination of the expert and gating
networks’ outputs.

Kim-Anh L& Cao Biometrics on the Lake 2009

ic markers



Mixture of Experts

Mixture of Experts

m Expert network: each input is modeled via a Bernoulli
distribution

/i (1—}/j)
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m Gating network: different types of gating functions are
proposed
Ty (Wj; oup)
H
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m Final output: weighted sum of all the local output vectors
produced by the experts and the gating network

H
Flylw: W) = gn(w:mh, an)fif (v|w; By)
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Mixture of Experts

Application of Mixture of Experts

Gating function
mhfy (Wi oup)

Sy i C (wji o)

gh(wj; mh, ap) =

m Multinomial logit model
m Independent model (Ng & McLachlan, 2008)7
m Location model (Hunt & Jorgensen, 1999)

— fitted with EM algorithm
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Data sets

Data sets

p q No. of Samples Ref.
class 0 class 1
Prostate | 7,884 | 8 | 37 (rec) 42 (no rec) Stephenson et al. (2005)
Breast | 5,537 | 8 | 75 (rec) 181 (no rec) | van de Vivjer et al. (2002)
CNS 7,128 | 5 | 21 (dead) 39 (alive) Pomeroy et al. (2002)

p: the number of transcripts, g: the number of clinical factors.

— careful use of cross-validation during gene selection step

— integrative ME is learnt on a training set and prediction is
evaluated on a test set
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Classification performance

Assessing additional predictive value

On the gene expression data alone
Wrapper approaches perform internal variable selection:

m Recursive Feature Elimination (RFE, Guyon et al. 2002)
m Nearest Schrunken Centroids (NSC, Tibshirani et al. 2002)
m Random Forests (RF, Breiman 2001)

On the clinical data alone
m Logistic regression

On gene expression and clinical data
Integrative ME with different gating functions:

m Multinomial logit
m Location model
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Classification performance

Error rate estimation: ME + t-test
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Classification performance

In a nutshell

m integrative ME is more accurate than clinical variables alone

m integrative ME is often more accurate than microarray data
alone especially when the number of genes is small

m performance also depends on the data set

Link with biology 7
m Is the proposed hybrid signature biologically relevant 7

m |s there any difference between the gene selection procedures 7
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Biological relevance

Biological relevance: Prostate & Breast

cancers

Gene Name Symbaol Level | Gene  selection | Link to cancer
method [rank]
N Etoposide induced 2.4 mRNA El24 + | ttest[l]. RF[1], | Gu et al (2000): Zhao et al. (2005)
< sPLS[1]
§ Erythrocyte membrane protein | EPB49 - t-test[2], sPLS[1] | Lutchman et al. (1999)
2 | band 4.9
Chromatin modifying protein 1A | CHMP1A - t-test[3]. RF[2], | Liet al (2008)
sPLS[5|
Asparagine synthetase ASNS + | RF[4] Richards and Kilberg (2006); Estes
et al. (2007)
Prothymosin, alpha PTMA + | RF[3] Suzuki et al. (2006)
_ | Insulin-like growth factor binding | IGFBPS + | t-test[1.3]. Nishidate et al. (2004); van't Veer et al.
g protein 5 RF|[5.8,13]. (2002); Li et al. (2007); Mita et al.
& sPLS[1.3) (2007)
Phosphoglycerate mutase 1 PGK1 + | ttest[2], RF[11], | Duan et al. (2002); Hwang et al. (2006);
sPLS(2| Zhang et al. (2005); Zicker et al. (2008)
Protein regulator of cytokinesis 1 | PRC1 + | ttest[5]. RF[12]. | Shimo et al. (2007)
sPLS5|
E2F transcription factor 1 E2F1 + | t-test[13] Zhang et al. (2000); Vuaroqueanx et al,
(2007)
Adrenomedullin ADM + | RF[6]
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Biological relevance

Biological relevance: CNS cancer

Gene Name Symbol Level | Gene  selection | Link to cancer
method [rank]

High mobility group AT-hook 1 | HMGA1 + | t-test[2]. RF[8]. | Lian et al. (2008)

z sPLS[2]

T | Vomyb myeloblastosis viral oneo- | MYBL2 + | t-test[6) Raschella et al. (1999)
gene homolog (avian)-like 2
Carcinoembryonic antigen- | CEACAMG | 4+ | RF[2] Maraga et al. (2008)
related  cell adhesion  molecule
[
Ras homolog gene family, mem- | RhoC + | sPLS[3] Boone et al. {2009)
ber C
Heat shock T0kDa protein 9 HSPAY + | RF[4] Dundas et al. (2005)

Different gene selection approaches often highlight different genes

— relevant and complementary information
— potential biomarkers need to be further validated
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Conclusion

Conclusion

m Noisy characteristic of gene expression data can be
compensated by clinical variables

m Both types of variables are useful to predict cancer prognosis

m Integrative ME is a sound approach and can deal with
continuous and categorical variables

m Biologically relevant results were obtained

m R package integrativeME

m Improvements with larger-scale studies involving the records of
a larger number of clinical variables
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