Estimation of Finite Mixtures with Nonparametric Components

C. S. Chee

Department of Statistics The University of Auckland chee@stat.auckland.ac.nz Joint work with Dr Yong Wang

- ● ● ●

Introduction

- Preamble
- The Kernel-based Semiparametric Model
- The Mixture-based Semiparametric Model

2 Estimation and Selection

- Model Parameter Estimation
- Tuning Parameter Selection
- 3 Real Data Examples

④ Simulation

- Data
- Performance Measures
- Results

Estimation and Selection Real Data Examples Simulation Summary Preamble

Part I

The Kernel-based Semiparametric Model The Mixture-based Semiparametric Model

C. S. Chee Semiparametric Mixtures of Mixture

æ

Preamble

The Kernel-based Semiparametric Model The Mixture-based Semiparametric Model

General Idea

Consider a mixture distribution having density g(x):

$$g(x) = \sum_{k=1}^{K} \lambda_k f(x - \mu_k)$$

Focus: A two-component mixture of location-shifted distributions (K = 2).

Goal: Estimate λ_1 , μ_1 , μ_2 and f given an iid sample $\{x_i\}_{1 \le i \le n}$ from g(x). **Approach**: Use a nonparametric mixture for f.

(日) (同) (三) (三)

Estimation and Selection Real Data Examples Simulation Summary

Preamble

The Kernel-based Semiparametric Model The Mixture-based Semiparametric Model

A Running Example

- This dataset contains the waiting time between eruptions and the duration of the eruption for the Old Faithful geyser.
- A two-component mixture model is reasonable.

Old Faithful Geyser Data

Preamble

The Kernel-based Semiparametric Model The Mixture-based Semiparametric Model

Identifiability Result

Model

$$g(x) = \lambda f(x - \mu_1) + (1 - \lambda) f(x - \mu_2)$$

- Do not want to assume f belongs to a parametric family.
- **Question**: Is g(x) identifiable?
- g(x) is identifiable if it is unique as a function of λ , μ_1 , μ_2 and f.

Image: A math a math

Preamble

The Kernel-based Semiparametric Model The Mixture-based Semiparametric Model

Identifiability Result

Model

$$g(x) = \lambda f(x - \mu_1) + (1 - \lambda) f(x - \mu_2)$$

- Do not want to assume f belongs to a parametric family.
- **Question**: Is g(x) identifiable?
- g(x) is identifiable if it is unique as a function of λ , μ_1 , μ_2 and f.
- Bordes et al. (2006) and Hunter et al. (2007) showed that g(x) is identifiable if f is a symmetric density about zero when λ ≠ 1/2 and μ₁ ≠ μ₂.

< □ > < 同 > < 回 >

Preamble The Kernel-based Semiparametric Model The Mixture-based Semiparametric Model

The Kernel-based Semiparametric Model

Bordes et al. (2007)

$$g(x) = \lambda f(x - \mu_1) + (1 - \lambda) f(x - \mu_2)$$

with f being the symmetrized nonparametric kernel given by

$$f(y) = \sum_{i=1}^{n} \frac{1}{2nh} \left\{ K\left(\frac{y - x_i + \mu_{z_i}}{h}\right) + K\left(\frac{y + x_i - \mu_{z_i}}{h}\right) \right\},$$

where

- $K(\cdot)$ a kernel density function,
- h > 0 the bandwidth,
- $z_i \in \{1,2\}$ the component label of x_i .

Estimation and Selection Real Data Examples Simulation Summary Preamble **The Kernel-based Semiparametric Model** The Mixture-based Semiparametric Model

Construction of g

$$g(x) = \lambda f(x - \mu_1) + (1 - \lambda) f(x - \mu_2)$$

$$f(y) = \sum_{i=1}^{n} \frac{1}{2nh} \left\{ K\left(\frac{y - (x_i - \mu_{z_i})}{h}\right) + K\left(\frac{y - [-(x_i - \mu_{z_i})]}{h}\right) \right\}$$

For illustration, consider h = 1, n = 2 and $K(x) = \frac{e^{-x^2/2}}{\sqrt{2\pi}}$.

Assume that z_i and μ_{z_i} are known.

Let
$$x_i^{\star} = x_i - \mu_{z_i}$$
.

< □ > < 同 > < 三 >

Estimation and Selection Real Data Examples Simulation Summary

Preamble **The Kernel-based Semiparametric Model** The Mixture-based Semiparametric Model

Construction of g

$$f(y) = \sum_{i=1}^{n} \frac{1}{2nh} \left\{ K\left(\frac{y - x_i^*}{h}\right) + K\left(\frac{y - (-x_i^*)}{h}\right) \right\}$$

(日)

Estimation and Selection Real Data Examples Simulation Summary

Preamble **The Kernel-based Semiparametric Model** The Mixture-based Semiparametric Model

Construction of g

$$f(y) = \sum_{i=1}^{n} \frac{1}{2nh} \left\{ K\left(\frac{y - x_i^*}{h}\right) + K\left(\frac{y - (-x_i^*)}{h}\right) \right\}$$

C. S. Chee Semiparametric Mixtures of Mixture

Image: A math a math

Estimation and Selection Real Data Examples Simulation Summary

Preamble **The Kernel-based Semiparametric Model** The Mixture-based Semiparametric Model

Construction of g

$$f(y) = \sum_{i=1}^{n} \frac{1}{2nh} \left\{ K\left(\frac{y - x_i^*}{h}\right) + K\left(\frac{y - (-x_i^*)}{h}\right) \right\}$$

C. S. Chee Semiparametric Mixtures of Mixture

(日)

Estimation and Selection Real Data Examples Simulation Summary

Preamble **The Kernel-based Semiparametric Model** The Mixture-based Semiparametric Model

Construction of g

$$f(y) = \sum_{i=1}^{n} \frac{1}{2nh} \left\{ K\left(\frac{y - x_i^{\star}}{h}\right) + K\left(\frac{y - (-x_i^{\star})}{h}\right) \right\}$$

C. S. Chee Semiparametric Mixtures of Mixture

Image: A math a math

Estimation and Selection Real Data Examples Simulation Summary Preamble **The Kernel-based Semiparametric Model** The Mixture-based Semiparametric Model

Construction of g

C. S. Chee Semiparametric Mixtures of Mixture

Estimation and Selection Real Data Examples Simulation Summary

Preamble **The Kernel-based Semiparametric Model** The Mixture-based Semiparametric Model

Construction of g

$$g(x) = \lambda f(x - \mu_1) + (1 - \lambda) f(x - \mu_2)$$

C. S. Chee Semiparametric Mixtures of Mixture

э

∃ >

Estimation and Selection Real Data Examples Simulation Summary

Preamble The Kernel-based Semiparametric Model The Mixture-based Semiparametric Model

Construction of g

$$g(x) = \lambda f(x - \mu_1) + (1 - \lambda) f(x - \mu_2)$$

C. S. Chee Semiparametric Mixtures of Mixture

< 4 ₽ > < E

э

Estimation and Selection Real Data Examples Simulation Summary

Preamble **The Kernel-based Semiparametric Model** The Mixture-based Semiparametric Model

Construction of g

$$g(x) = \lambda f(x - \mu_1) + (1 - \lambda) f(x - \mu_2)$$

C. S. Chee Semiparametric Mixtures of Mixture

Estimation and Selection Real Data Examples Simulation Summary

Preamble **The Kernel-based Semiparametric Model** The Mixture-based Semiparametric Model

Old Faithful Geyser Data

h = 3.99

C. S. Chee Semiparametric Mixtures of Mixture

э

Estimation and Selection Real Data Examples Simulation Summary

Preamble **The Kernel-based Semiparametric Model** The Mixture-based Semiparametric Model

Old Faithful Geyser Data

$$\begin{aligned} \frac{\hat{\lambda}}{2nh} \times & \text{Left component} \\ \left\{ \left\{ \hat{p}_{11} \mathcal{K} \left(\frac{x - \hat{\mu}_1 - x_1 + \hat{\mu}_1}{h} \right) + \hat{p}_{11} \mathcal{K} \left(\frac{x - \hat{\mu}_1 + x_1 - \hat{\mu}_1}{h} \right) + \hat{p}_{12} \mathcal{K} \left(\frac{x - \hat{\mu}_1 - x_1 + \hat{\mu}_2}{h} \right) + \hat{p}_{12} \mathcal{K} \left(\frac{x - \hat{\mu}_1 + x_1 - \hat{\mu}_2}{h} \right) \right\} \\ + \hat{p}_{21} \mathcal{K} \left(\frac{x - \hat{\mu}_1 - x_2 + \hat{\mu}_1}{h} \right) + \hat{p}_{21} \mathcal{K} \left(\frac{x - \hat{\mu}_1 + x_2 - \hat{\mu}_1}{h} \right) + \hat{p}_{22} \mathcal{K} \left(\frac{x - \hat{\mu}_1 - x_2 + \hat{\mu}_2}{h} \right) + \hat{p}_{22} \mathcal{K} \left(\frac{x - \hat{\mu}_1 + x_2 - \hat{\mu}_2}{h} \right) \right\} \\ + \cdots \\ + \hat{p}_{n1} \mathcal{K} \left(\frac{x - \hat{\mu}_1 - x_n + \hat{\mu}_1}{h} \right) + \hat{p}_{n1} \mathcal{K} \left(\frac{x - \hat{\mu}_1 + x_n - \hat{\mu}_1}{h} \right) + \hat{p}_{n2} \mathcal{K} \left(\frac{x - \hat{\mu}_1 - x_n + \hat{\mu}_2}{h} \right) + \hat{p}_{n2} \mathcal{K} \left(\frac{x - \hat{\mu}_1 + x_n - \hat{\mu}_2}{h} \right) \right\} \right\} \\ \frac{(1 - \hat{\lambda})}{2nh} \times & \text{Right component} \\ \left\{ \left\{ \hat{p}_{11} \mathcal{K} \left(\frac{x - \hat{\mu}_2 - x_1 + \hat{\mu}_1}{h} \right) + \hat{p}_{11} \mathcal{K} \left(\frac{x - \hat{\mu}_2 + x_1 - \hat{\mu}_1}{h} \right) + \hat{p}_{12} \mathcal{K} \left(\frac{x - \hat{\mu}_2 - x_1 + \hat{\mu}_2}{h} \right) + \hat{p}_{12} \mathcal{K} \left(\frac{x - \hat{\mu}_2 + x_1 - \hat{\mu}_2}{h} \right) \right\} \\ + \hat{p}_{21} \mathcal{K} \left(\frac{x - \hat{\mu}_2 - x_2 + \hat{\mu}_1}{h} \right) + \hat{p}_{21} \mathcal{K} \left(\frac{x - \hat{\mu}_2 + x_2 - \hat{\mu}_1}{h} \right) + \hat{p}_{22} \mathcal{K} \left(\frac{x - \hat{\mu}_2 - x_2 + \hat{\mu}_2}{h} \right) + \hat{p}_{22} \mathcal{K} \left(\frac{x - \hat{\mu}_2 + x_2 - \hat{\mu}_2}{h} \right) \right\} \\ + \cdots \\ + \hat{p}_{n1} \mathcal{K} \left(\frac{x - \hat{\mu}_2 - x_n + \hat{\mu}_1}{h} \right) + \hat{p}_{n1} \mathcal{K} \left(\frac{x - \hat{\mu}_2 + x_n - \hat{\mu}_1}{h} \right) + \hat{p}_{n2} \mathcal{K} \left(\frac{x - \hat{\mu}_2 - x_n + \hat{\mu}_2}{h} \right) + \hat{p}_{n2} \mathcal{K} \left(\frac{x - \hat{\mu}_2 + x_n - \hat{\mu}_2}{h} \right) \right\} \right\} \\ = (1 + 1) \mathcal{C} + \mathcal$$

C. S. Chee Semiparametric Mixtures of Mixture

Preamble The Kernel-based Semiparametric Model The Mixture-based Semiparametric Model

The Mixture-based Semiparametric Model

Our proposal

$$g(x) = \lambda f(x - \mu_1) + (1 - \lambda) f(x - \mu_2)$$

with f being the symmetrized nonparametric mixture given by

$$f(y; \boldsymbol{\pi}, \boldsymbol{\theta}) = \sum_{j=1}^{m} \frac{\pi_j}{2h} \left\{ \phi\left(\frac{y-\theta_j}{h}\right) + \phi\left(\frac{y+\theta_j}{h}\right) \right\},$$

where

- $\phi(\cdot)$ a known unimodal density that is symmetric about zero,
- h > 0 the (known or fixed) tuning parameter,
- $\boldsymbol{\theta} = (\theta_1, \dots, \theta_m)^\top$ a support point vector,
- $\boldsymbol{\pi} = (\pi_1, \dots, \pi_m)^\top$ the corresponding probability mass vector.

- 4 同 2 4 回 2 4 U

Estimation and Selection Real Data Examples Simulation Summary Preamble The Kernel-based Semiparametric Model The Mixture-based Semiparametric Model

Old Faithful Geyser Data

h = 5.9

C. S. Chee Semiparametric Mixtures of Mixture

э

Estimation and Selection Real Data Examples Simulation Summary

Preamble The Kernel-based Semiparametric Model The Mixture-based Semiparametric Model

A Comparison

C. S. Chee Semiparametric Mixtures of Mixture

Preamble The Kernel-based Semiparametric Model **The Mixture-based Semiparametric Model**

A Comparison

$$\frac{\hat{\lambda}}{2nh} \times \left\{ \left\{ \hat{p}_{11} \mathcal{K} \left(\frac{x - \hat{\mu}_1 - x_1 + \hat{\mu}_1}{h} \right) + \hat{p}_{11} \mathcal{K} \left(\frac{x - \hat{\mu}_1 + x_1 - \hat{\mu}_1}{h} \right) + \hat{p}_{12} \mathcal{K} \left(\frac{x - \hat{\mu}_1 - x_1 + \hat{\mu}_2}{h} \right) + \hat{p}_{12} \mathcal{K} \left(\frac{x - \hat{\mu}_1 + x_1 - \hat{\mu}_2}{h} \right) \right\} \\ + \hat{p}_{21} \mathcal{K} \left(\frac{x - \hat{\mu}_1 - x_2 + \hat{\mu}_1}{h} \right) + \hat{p}_{21} \mathcal{K} \left(\frac{x - \hat{\mu}_1 + x_2 - \hat{\mu}_1}{h} \right) + \hat{p}_{22} \mathcal{K} \left(\frac{x - \hat{\mu}_1 - x_2 + \hat{\mu}_2}{h} \right) + \hat{p}_{22} \mathcal{K} \left(\frac{x - \hat{\mu}_1 + x_2 - \hat{\mu}_2}{h} \right) \right\} \\ + \cdots \\ + \hat{p}_{n1} \mathcal{K} \left(\frac{x - \hat{\mu}_1 - x_n + \hat{\mu}_1}{h} \right) + \hat{p}_{n1} \mathcal{K} \left(\frac{x - \hat{\mu}_1 + x_n - \hat{\mu}_1}{h} \right) + \hat{p}_{n2} \mathcal{K} \left(\frac{x - \hat{\mu}_1 - x_n + \hat{\mu}_2}{h} \right) + \hat{p}_{n2} \mathcal{K} \left(\frac{x - \hat{\mu}_1 - x_n + \hat{\mu}_2}{h} \right) \right\} \right\}$$

Kernel (left component)

Mixture (left component)

$$\frac{\widehat{\lambda}}{2h} \times \left\{ \phi \left(\frac{x - \widehat{\mu}_1 - \widehat{\theta}}{h} \right) + \phi \left(\frac{x - \widehat{\mu}_1 + \widehat{\theta}}{h} \right) \right\}$$

C. S. Chee Semiparametric Mixtures of Mixture

▲ 同 ▶ ▲ 目

э

Model Parameter Estimation Tuning Parameter Selection

Part II

C. S. Chee Semiparametric Mixtures of Mixture

æ

Model Parameter Estimation Tuning Parameter Selection

Model Parameter Estimation

- Assume that *h* is KNOWN.
- Employ maximum likelihood estimation of the model parameters.
- Denote by G a discrete distribution formed by the m points of support θ with corresponding masses π.
- Let $\boldsymbol{\beta} = (\lambda, \mu_1, \mu_2)^{\top}$.
- The log-likelihood function: $\ell_h(G,\beta) = \sum_{i=1}^n \log g_h(x_i; G,\beta)$
- \widehat{G} and $\widehat{\beta}$ (estimates of G and β) can be found by the algorithm of Wang (2009).

Model Parameter Estimation Tuning Parameter Selection

Model Parameter Estimation

- Assume that *h* is KNOWN.
- Employ maximum likelihood estimation of the model parameters.
- Denote by G a discrete distribution formed by the m points of support θ with corresponding masses π.
- Let $\boldsymbol{\beta} = (\lambda, \mu_1, \mu_2)^{\top}$.
- The log-likelihood function: $\ell_h(G,\beta) = \sum_{i=1}^n \log g_h(x_i; G,\beta)$
- \widehat{G} and $\widehat{\beta}$ (estimates of G and β) can be found by the algorithm of Wang (2009).
- What if *h* is UNKNOWN?

Model Parameter Estimation Tuning Parameter Selection

Tuning Parameter Selection

- Select a "good" *h* from a set of predetermined candidates.
- General approaches to model selection can be used:
 - cross-validation (CV)
 - information criteria
- General strategy for automatic selection of tuning parameter:
 - Step 1: Choose a selection criterion.
 - Step 2: Compute the value of the specified selection criterion over a grid of tuning parameters.
 - Step 3: Select the *h* that has the minimum value of the selection criterion.

Model Parameter Estimation Tuning Parameter Selection

Cross-Validation

- Two CV-based criteria:
 - LSCV the least-squares cross-validation criterion
 - LCV the likelihood cross-validation criterion
- One of the commonly used CV methodologies is the V-fold CV.
- We set V = 10.

▲ 同 ▶ → ● 三

Model Parameter Estimation Tuning Parameter Selection

Illustration: V-fold CV

 $\{x_i\}_{1 \le i \le n}$ is split into V roughly equal-sized and non-overlapping subsets S_1, \ldots, S_V .

- Select S_1 as the test set and the remaining folds as the training set.
- Model parameters are estimated based on the training set.
- Fitted model is evaluated on the test set.
- Repeat for S_2, \ldots, S_V .

Model Parameter Estimation Tuning Parameter Selection

CV-based Criteria

The LSCV and LCV criteria implemented via the V-fold CV procedure are respectively defined by

$$\mathrm{LSCV}(h) = \frac{1}{V} \sum_{\nu=1}^{V} \int \left\{ \widehat{g}_{-\nu}(x;\widehat{G},\widehat{\beta},h) \right\}^2 dx - \frac{2}{V} \sum_{\nu=1}^{V} \sum_{x_j \in S_{\nu}} \frac{1}{|S_{\nu}|} \widehat{g}_{-\nu}(x_j;\widehat{G},\widehat{\beta},h)$$

and

$$\operatorname{LCV}(h) = -rac{1}{V}\sum_{\nu=1}^{V}\sum_{x_j\in \mathcal{S}_{\nu}}rac{1}{|\mathcal{S}_{\nu}|}\log\,\widehat{g}_{-\nu}(x_j;\,\widehat{G},\widehat{eta},h),$$

where $|S_{\nu}|$ denotes the cardinality of S_{ν} and $\hat{g}_{-\nu}(x; \hat{G}, \hat{\beta}, h)$ is the fitted model based on all the data points except the observations belonging to the subset S_{ν} .

Model Parameter Estimation Tuning Parameter Selection

Information Criteria

• Two popular information criteria:

$$AIC(h) = -2\ell_h(\widehat{G},\widehat{\beta}) + 2p$$

BIC(h) = $-2\ell_h(\widehat{G},\widehat{\beta}) + p\log(n)$

where p is the number of free parameters.

• We can also use a small sample version of AIC, called $\mathrm{AIC}_{\mathrm{c}}$ (see Burnham and Anderson, 2002):

$$AIC_{c}(h) = AIC(h) + \frac{2p(p+1)}{n-p-1}$$

Part III

C. S. Chee Semiparametric Mixtures of Mixture

<ロ> <同> <同> < 同> < 同>

æ

Real Data Examples

- Compare our mixture-based semiparametric model against the kernel-based semiparametric model.
- Used the algorithm of Benaglia *et al.* (2009) for fitting the kernel-based model.
- $K(\cdot)$ and $\phi(\cdot)$ were taken to be the standard Gaussian density.
 - Example 1: 2008 World Fly Fishing Championships Data
 - Example 2: Exploring Relationships in Body Dimensions
 - Example 3: Australian Athletes Data

Example 1: 2008 World Fly Fishing Championships Data

- The 2008 WFFC was held in the Taupo-Rotorua regions; details may be obtained at Yee (2009).
- Considered the length of fish caught in Lake Rotoaira (n = 201).

Result 1: Fish Length Data

C. S. Chee

Semiparametric Mixtures of Mixture

Example 2: Exploring Relationships in Body Dimensions

- 21 body dimension measurements as well as age, weight, height and gender on 247 men and 260 women (Heinz *et al.*, 2003).
- Used the variable elbow diameter.

Result 2: Elbow Diameter Data

h = 0.21

h = 0.32

C. S. Chee

Semiparametric Mixtures of Mixture

Result 2: Elbow Diameter Data

(b) Kernel (LCV)

C. S. Chee

Semiparametric Mixtures of Mixture

Example 3: Australian Athletes Data

- Data on 102 male and 100 female Australian athletes collected at the Australian Institute of Sport (Cook and Weisberg, 1994).
- Used the variable lean body mass (LBM).

Result 3: LBM Data

C. S. Chee

Semiparametric Mixtures of Mixture

< 同 ▶

∃ >

Data Performance Measures Results

Part IV

C. S. Chee Semiparametric Mixtures of Mixture

æ

Data Performance Measures Results

Data

- Consider three two-component mixtures (NOmix, T5mix, PEmix) of these components:
 - standard normal (NO)
 - *t*-distribution with 5 dof (T5)
 - standard power exponential with shape parameter $\nu =$ 4 (PE)

with $\lambda = 0.3$, $\mu_1 = -2$, $\mu_2 = 2$ and $\sigma = 1$.

• In each simulation example, 100 replications with n = 200 were generated.

Data Performance Measures Results

Performance Measures

• To select *h*:

LSCV and LCV

• To assess parameter estimates:

$$\operatorname{SE}(\alpha,\widehat{\alpha}) = (\widehat{\alpha} - \alpha)^2$$

• To assess density estimates:

$$ISE(g, \hat{g}) = \int [\hat{g}(x) - g(x)]^2 dx$$
$$KLL(g, \hat{g}) = \int g(x) \log \frac{g(x)}{\hat{g}(x)} dx$$

A D

Data Performance Measures Results

Result (a): Parameter Estimates

Model	Selection Method	PEmix	NOmix	T5mix
(i)	$\widehat{\mathrm{MSE}}(imes 10^{-3})$ of λ estimates			
Kernel	LSCV	0.96 (0.15)	1.26 (0.17)	1.58 (0.23)
Kernel	LCV	0.95 (0.15)	1.27 (0.17)	1.65 (0.23)
Mixture	LSCV	0.92 (0.14)	1.23 (0.17)	1.43 (0.21)
Mixture	LCV	0.92 (0.14)	1.22 (0.17)	1.45 (0.21)
(ii)	$\widehat{\mathrm{MSE}}(\times 10^{-2})$ of μ_1 estimates			
Kernel	LSCV	2.55 (0.28)	2.32 (0.36)	5.02 (0.61)
Kernel	LCV	2.50 (0.28)	2.30 (0.36)	4.82 (0.59)
Mixture	LSCV	2.30 (0.29)	2.31 (0.35)	3.97 (0.53)
Mixture	LCV	2.10 (0.27)	2.33 (0.34)	4.00 (0.56)
(iii)	$\widehat{\mathrm{MSE}}(imes 10^{-2})$ of μ_2 estimates			
Kernel	LSCV	1.11 (0.16)	0.87 (0.12)	1.30 (0.20)
Kernel	LCV	1.03 (0.15)	0.88 (0.12)	1.62 (0.28)
Mixture	LSCV	1.03 (0.18)	0.87 (0.11)	1.13 (0.18)
Mixture	LCV	0.86 (0.13)	0.87 (0.12)	1.06 (0.17)

NOTE: The values in parentheses are the corresponding standard errors.

æ

Data Performance Measures **Results**

Result (b): Density Estimates

Model	Selection Method	PEmix	NOmix	T5mix
(i)	$\widehat{\mathrm{MISE}}\;(\times 10^{-3})$			
Kernel	LSCV	3.08 (0.18)	3.10 (0.20)	3.87 (0.24)
Kernel	LCV	3.22 (0.19)	2.87 (0.18)	4.04 (0.27)
Mixture	LSCV	2.96 (0.20)	2.56 (0.18)	3.27 (0.22)
Mixture	LCV	2.73 (0.18)	2.24 (0.16)	3.11 (0.21)
(ii)	$\widehat{\mathrm{EKLL}}~(\times 10^{-2})$			
Kernel	LSCV	2.13 (0.09)	1.84 (0.13)	5.96 (0.73)
Kernel	LCV	1.91 (0.09)	1.70 (0.11)	5.03 (0.73)
Mixture	LSCV	1.88 (0.11)	1.40 (0.10)	3.96 (0.38)
Mixture	LCV	1.56 (0.09)	1.28 (0.10)	3.49 (0.32)

NOTE: The values in parentheses are the corresponding standard errors.

э

Part V

C. S. Chee Semiparametric Mixtures of Mixture

*ロ * * @ * * 注 * * 注 *

æ

Summary

- A methodology for a two-component mixture model with symmetrized nonparametric components is proposed.
- Simulation results and real examples show that the mixture-based methods are more appealing than the kernel-based methods.
- With advantages such as:
 - greater flexibility
 - simpler final model
 - better performance

the mixture-based methods are competitive for practical applications.

Acknowledgements

- MOHE and UMT sponsoring my study
- Dept. of Stats., The UoA covering conference-related costs

References

Cook, R. D. and Weisberg, S. An Introduction to Regression Graphics *New York: Wiley*, 1994.

Burnham, K. P. and Anderson, D. R.

Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach, Second Edition New York: Springer-Verlag, 2002.

Heinz, G., Peterson, L. J., Johnson, R. W. and Kerk, C. J. Exploring Relationships in Body Dimensions *J. Stat. Educ.*, 11(2):online, 2003.

Bordes, L., Mottelet, S. and Vandekerkhove, P. Semiparametric Estimation of a Two-Component Mixture Model *Ann. Statist.*, 34(3):1204–1232, 2006.

Hunter, D. R., Wang, S. and Hettmansperger, T. P. Inference for Mixtures of Symmetric Distributions *Ann. Statist.*, 35(1):224–251, 2007.

< 4 ₽ > < 3

References

Stat. Comput., 2009, To appear.
Yee, T. W.
VGLMs and VGAMs: an Overview for Applications in Fisheries Research Fish. Res., 2009, Accepted.