Some results for dependence in high-dimensional multiple hypothesis testing situations

Sandy Clarke supervised by Professor Peter Hall

Mathematics and Statistics Department The University of Melbourne

November, 2009

Some results for dependence in high-dimensional multiple hypothesis testing situations

"discussed in more detail"

Outline

- 1 Problem
 - High dimensional multiple hypothesis testing
 - Stronger control
 - Procedures
 - Dependence
- 2 Possible solutions
 - Ignore positive dependence
 - Use conservative critical values
 - Estimate correlation structure
 - Make assumptions about the correlation structure
- 3 Our results
 - Weighted moving average model
 - Results for dependence
 - Impact on procedures

- 1 Problem
 - High dimensional multiple hypothesis testing
 - Stronger control
 - Procedures
 - Dependence
- 2 Possible solutions
 - Ignore positive dependence
 - Use conservative critical values
 - Estimate correlation structure
 - Make assumptions about the correlation structure
- 3 Our results
 - Weighted moving average model
 - Results for dependence
 - Impact on procedures

Hypothesis testing

- test statistic: X₁
- null hypotheses:

$$H_{01}: \mu_i = 0$$

- one-sided test: reject H_{01} if $X_1 > x$
- choose x so that: $P_0(X_1 > x) = \alpha$

High dimensional multiple hypothesis testing

test statistics:

$$X_1, X_2, \dots, X_m$$
 (m very large)

■ null hypotheses:

$$H_{01}, H_{02}, \ldots, H_{0m} : \mu_i = 0$$

one-sided test:

reject
$$H_{0i}$$
 if $X_i > x$

High dimensional multiple hypothesis testing

test statistics:

$$X_1, X_2, \dots, X_m$$
 (m very large)

null hypotheses:

$$H_{01}, H_{02}, \ldots, H_{0m} : \mu_i = 0$$

- one-sided test: reject H_{0i} if $X_i > x$
- example:DNA microarray expression data

High dimensional multiple hypothesis testing

test statistics:

$$X_1, X_2, \dots, X_m$$
 (m very large)

null hypotheses:

$$H_{01}, H_{02}, \ldots, H_{0m} : \mu_i = 0$$

- one-sided test: reject H_{0i} if $X_i > x$
- example: DNA microarray expression data
- curse of dimensionality: $n \ll m$

Stronger control of Type I errors

- $P_0(X_1 > x) = 0.05$ gives too many false positives
- very strict error rates

FWER: $P(\text{false rejections} \ge 1) \le \alpha$

for example: Holm (1979)

GFWER: $P(\text{false rejections } \geq k) \leq \alpha$

for example: Lehmann & Romano (2005)

Stronger control of Type I error

error rates which favour more rejections

FDR:
$$E(\frac{\text{false rejections}}{\text{rejections}}) \leq \alpha$$

for example: Benjamini & Hochberg (1995)

tFDP:
$$P(\frac{\text{false rejections}}{\text{rejections}} \ge c) \le \alpha$$

for example: Lehmann & Romano (2005)

Types of procedures

- one-step compare all X_i to x which depends only on α and m
- step-down compare each $X_{(i)}$ to x_i from largest to smallest until one is not rejected.
- step-up compare $X_{(i)}$ to x_i from smallest to largest until one is rejected

Types of procedures

Example: Benjamini and Hochberg (1995)

- \blacksquare controls FDR at α
- step-up procedure
- algorithm:

for
$$x_i$$
 such that $P_0(X > x_i) = \frac{i\alpha}{m}$

- **1** if $X_{(1)} > x_m$ reject $X_{(1)}, \ldots, X_{(m)}$ and exit
- **2** if $X_{(2)} > x_{m-1}$ reject $X_{(2)}, \dots, X_{(m)}$ and exit
- 3 if $X_{(3)} > x_{m-2}$ reject $X_{(3)}, \dots, X_{(m)}$ and exit
- 4 etc...

The assumption of independence

The assumption of independence is rarely valid:

"It is generally assumed that genes or proteins that act together in a pathway will exhibit strong correlations among their expression values, evident as gene clusters" (p. 46)

Clarke et al (2008) in Nature Reviews

The assumption of independence has consequences.

- 1 Problem
 - High dimensional multiple hypothesis testing
 - Stronger control
 - Procedures
 - Dependence
- 2 Possible solutions
 - Ignore positive dependence
 - Use conservative critical values
 - Estimate correlation structure
 - Make assumptions about the correlation structure
- 3 Our results
 - Weighted moving average model
 - Results for dependence
 - Impact on procedures

- Possible solutions
 - ☐ Ignore positive dependence

Ignore positive dependence

- e.g. Benjamini and Yekutieli (2001)
- for certain kinds of positive dependence, the BH procedure controls FDR

- Possible solutions
 - ☐ Ignore positive dependence

Ignore positive dependence

- e.g. Benjamini and Yekutieli (2001)
- for certain kinds of positive dependence, the BH procedure controls FDR
- conservative control which doesn't take advantage of potential gains in power from dependence

- Possible solutions
 - Use conservative critical values

Use conservative critical values

- e.g. Benjamini and Yekutieli (2001)
- choose *x_i* such that

$$P_0(X > x_i) = \frac{i\alpha}{m\sum_{i=1}^m i}$$

control for general dependence

Use conservative critical values

- e.g. Benjamini and Yekutieli (2001)
- choose x_i such that

$$P_0(X > x_i) = \frac{i\alpha}{m\sum_{i=1}^m i}$$

- control for general dependence
- severe reduction in power

- Possible solutions
 - Estimate correlation structure

Estimate correlation structure

- e.g. Westfall and Young (1993)
- estimate correlation matrix or use resampling to 'break' the correlation
- ideally, provides the true null distribution of the test statistics

- Possible solutions
 - Estimate correlation structure

Estimate correlation structure

- e.g. Westfall and Young (1993)
- estimate correlation matrix or use resampling to 'break' the correlation
- ideally, provides the true null distribution of the test statistics
- lacktriangleright practically, computationally demanding and unreliable for $n \ll m$

- Possible solutions
 - ☐ Make assumptions about the correlation structure

Make assumptions about the correlation structure

- e.g. Efron (2007)
- hierarchical Poisson structure for histogram counts of test statistics
- enables the summary of correlation by a single parameter, A, used to correct the standard FDR estimate:

$$FDR(x|A) = FDR(x) \left[1 + A \frac{x\phi(x)}{\sqrt{2}(1 - \Phi(x))} \right]$$

- Possible solutions
 - ☐ Make assumptions about the correlation structure

Make assumptions about the correlation structure

- e.g. Efron (2007)
- hierarchical Poisson structure for histogram counts of test statistics
- enables the summary of correlation by a single parameter, A, used to correct the standard FDR estimate:

$$FDR(x|A) = FDR(x) \left[1 + A \frac{x\phi(x)}{\sqrt{2}(1 - \Phi(x))} \right]$$

appropriateness of the structure is questionable

- 1 Problem
 - High dimensional multiple hypothesis testing
 - Stronger control
 - Procedures
 - Dependence
- 2 Possible solutions
 - Ignore positive dependence
 - Use conservative critical values
 - Estimate correlation structure
 - Make assumptions about the correlation structure
- 3 Our results
 - Weighted moving average model
 - Results for dependence
 - Impact on procedures

- Our results
 - └─Weighted moving average model

Weighted moving average model

- MA_r $r: \#\{\theta_k \neq 0\}$
- $X_i = \sum_k \theta_k \epsilon_{i+k}$

constant θ_k 's, r finite, ϵ_i 's iid and $-\infty < i < \infty$

Weighted moving average model

- MA_r $r: \#\{\theta_k \neq 0\}$
- $X_i = \sum_k \theta_k \epsilon_{i+k}$ constant θ_k 's, r finite, ϵ_i 's iid and $-\infty < i < \infty$
- simple but not unreasonable representation
- t-statistic

- Our results
 - └─Weighted moving average model

Weighted moving average model

■ t-statistic

$$Y_{1,1}$$
 $Y_{1,2}$... $Y_{1,m}$
 $Y_{2,1}$ ·. :
 \vdots ·. :
 $Y_{n,1}$ $Y_{n,2}$... $Y_{n,m}$

$$egin{aligned} Y_{ji} &= \mu_i + \sum_k heta_k \epsilon_{j,i+k}^{'} \ & ext{for } 1 \leq j \leq n ext{ and } 1 \leq i \leq m \ & ext{with } \epsilon_{ij}^{'} ext{ iid, mean } 0 \end{aligned}$$

for
$$n$$
 large enough, under H_{0i} : $X_i \approx \sum_k \theta_k \epsilon_{i+k}$, where $\epsilon_i = n^{-1} \sum_{1 \leq j \leq n} \epsilon_{ji}^{'}$

Theoretical results

$$MA_r$$
: $X_i = \sum_k \theta_k \epsilon_{i+k}$, exceedences: $\{X_i > x\}$

- no clustering of exceedences for light-tailed data
- clustering persists for heavy-tailed data: if $\theta_{(1)} \ge \cdots \ge \theta_{(r)}$, then

$$P(M=q|M>0)
ightarrow rac{ heta_{(q)}^{
ho}- heta_{(q+1)}^{
ho}}{ heta_{(1)}^{
ho}}$$

where M is the limiting distribution of cluster size

- intuitive explanation
- lacksquare e.g. if $heta_1= heta_2=\cdots= heta_r$, then P(M=r|M>0) o 1

Results for dependence

Simulation results - clustering for independent data

Results for dependence

Simulation results – clustering with r = 10

Results for dependence

Simulation results – FDR with $\nu=500$ and df=5

Results for dependence

Simulation results – FDR with $\nu=500$ and $df=\infty$

└─Impact on procedures

What can we do about dependence when it matters?

lacktriangle estimate tail-weight and $heta_k$ and adjust appropriately

Impact on procedures

What can we do about dependence when it matters?

• estimate tail-weight and θ_k and adjust appropriately

└─Impact on procedures

Does it ever matter?

Most data sets are normally distributed

leukemia data

- observations themselves are averages
- test statistics are averages

└─Impact on procedures

Does it ever matter?

Or at least light tailed

mouse cholesterol data

- observations themselves are averages
- test statistics are averages

Impact on procedures

Thank you

Impact on procedures

Questions?