Some results for dependence in high-dimensional multiple hypothesis testing situations

Some results for dependence in high-dimensional
multiple hypothesis testing situations

Sandy Clarke
supervised by Professor Peter Hall

Mathematics and Statistics Department
The University of Melbourne

November, 2009



Some results for dependence in high-dimensional multiple hypothesis testing situations

“discussed in more detail”



Some results for dependence in high-dimensional multiple hypothesis testing situations
L outline

Outline

Problem
m High dimensional multiple hypothesis testing
m Stronger control
m Procedures
m Dependence

Possible solutions
m Ignore positive dependence
m Use conservative critical values
m Estimate correlation structure
m Make assumptions about the correlation structure

Our results
m Weighted moving average model
m Results for dependence
m Impact on procedures



Some results for dependence in high-dimensional multiple hypothesis testing situations

L Problem

Problem
m High dimensional multiple hypothesis testing
m Stronger control
m Procedures
m Dependence



Some results for dependence in high-dimensional multiple hypothesis testing situations
L Problem
L High dimensional multiple hypothesis testing

Hypothesis testing

B test statistic:

X1
m null hypotheses:
Ho1 : pi =0

m one-sided test:
reject Hop if X1 > x

m choose x so that:
Po(Xl > X) =«
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High dimensional multiple hypothesis testing

m test statistics:

X1, X2, ..., Xm (m very large)
m null hypotheses:
m one-sided test:

reject Ho; if X; > x

m example:

DNA microarray expression data

m curse of dimensionality: n < m
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Stronger control of Type | errors

m Py(X; > x) = 0.05 gives too many false positives

m very strict error rates
FWER: P(false rejections > 1) < «
for example: Holm (1979)

GFWER: P(false rejections > k) < «
for example: Lehmann & Romano (2005)
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Stronger control of Type | error

m error rates which favour more rejections

false reJectlons) <

FDR: E( rejections

for example: Benjamini & Hochberg (1995)

. pyfalse rejections

for example: Lehmann & Romano (2005)
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Types of procedures

m one-step
compare all X; to x which depends only on « and m
m step-down
compare each X(j) to x; from largest to smallest until one is
not rejected.
m step-up
compare X(;) to x; from smallest to largest until one is rejected
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Types of procedures

Example: Benjamini and Hochberg (1995)
m controls FDR at «
m step-up procedure
m algorithm: .
for x; such that Po(X > x;) = &

if X(l) > Xm reject X(l), . 7X(m) and exit

if X(z) > Xm—1 reject X(2), . ,X(m) and exit
if X(3) > xm—2 reject Xz), ..., X(m) and exit
etc...

[~J i)~
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The assumption of independence

The assumption of independence is rarely valid:

“It is generally assumed that genes or proteins that act together in
a pathway will exhibit strong correlations among their expression
values, evident as gene clusters” (p. 46)

Clarke et al (2008) in Nature Reviews

The assumption of independence has consequences.
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lgnore positive dependence

m e.g. Benjamini and Yekutieli (2001)

m for certain kinds of positive dependence, the BH procedure
controls FDR

m conservative control which doesn’t take advantage of
potential gains in power from dependence
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Use conservative critical values

m e.g. Benjamini and Yekutieli (2001)
m choose x; such that
ia
P X> i) — —~—m -
ol ) my i

m control for general dependence
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Use conservative critical values

m e.g. Benjamini and Yekutieli (2001)
m choose x; such that
o

PO(X > X,‘) = W
i=1

m control for general dependence

m severe reduction in power
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Estimate correlation structure

m e.g. Westfall and Young (1993)

m estimate correlation matrix or use resampling to ‘break’ the
correlation

m ideally, provides the true null distribution of the test statistics

m practically, computationally demanding and unreliable for
n<m
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m e.g. Efron (2007)

m hierarchical Poisson structure for histogram counts of test
statistics

m enables the summary of correlation by a single parameter, A,
used to correct the standard FDR estimate:

_ __xeb)
FDR(x|A) = FDR(x) [1 + Aﬁ(l _ d>(x))]
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Make assumptions about the correlation structure

m e.g. Efron (2007)

m hierarchical Poisson structure for histogram counts of test
statistics

m enables the summary of correlation by a single parameter, A,
used to correct the standard FDR estimate:

_ __xeb)
FDR(x|A) = FDR(x) [1 + Aﬁ(l _ d>(x))]

m appropriateness of the structure is questionable
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Weighted moving average model

m MA, r:#{0x # 0}
mXi =), Okeirk

constant 6, 's, r finite, ¢;'s iid and —oco < | < 00
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Weighted moving average model

m MA, r:#{0x # 0}
mXi =), Okeirk

constant 6, 's, r finite, ¢;'s iid and —oco < | < 00
m simple but not unreasonable representation

m t-statistic
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Weighted moving average model

m t-statistic
/
Yiin Yi2 .. Yim Yii = pi + Dk Ok€; 1k
Yoy : forl<j<nand1<i<m
’ with e;-j iid, mean 0
Yoi Y2 .. Yam for n large enough, under Hy;:

Xi =~ Okeitk,

_ -1
where ¢; =n" 37, €
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Theoretical results

MA;: X; =", Okeitk, exceedences: {X; > x}

m no clustering of exceedences for light-tailed data

m clustering persists for heavy-tailed data:
if 9(1) > > 9(,), then

or  — 07
P(M:q|l\/l>0)—>w
1)

where M is the limiting distribution of cluster size
m intuitive explanation

meg ifop=0,=---=0,, then PIM=r|M>0)—1
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Simulation results — clustering for independent data
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Simulation results — clustering with r = 10
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Simulation results — FDR with » = 500 and df =5
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Simulation results — FDR with v = 500 and df = >

0.055 4 ;
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What can we do about dependence when it matters?

m estimate tail-weight and 6, and adjust appropriately
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What can we do about dependence when it matters?

m estimate tail-weight and 6, and adjust appropriately
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Does it ever matter?

Most data sets are normally distributed

Golub (1999)

leukemia data ) | ;
m observations g1 o]
themselves are - £
averages g o
[ £ o
m test statistics are &£ v
averages o |
o7 1 1 1
-5 0 5 10 -3 -1 0 1 2 3

Test statistics Theoretical Quantiles
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Does it ever matter?

Or at least light tailed

Callow (2000)

O w
|

mouse cholesterol data 5 s /ff

m observations

themselves are v . £

averages g S o
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m test statistics are R
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Thank you
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Questions?
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