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Introduction
Seminal papers on MCMC: Geman and Geman
(1984), Gelfand and Smith (1990)
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Introduction
Seminal papers on MCMC: Geman and Geman
(1984), Gelfand and Smith (1990)

General strategy:
• generate samples{Xi, i = 0, 1, ...} from target

densityπ onD ⊆ IRn

• approximateI(g) =

∫

D

g(x)π(x)dx

• by ÎN(g) =
1

N

N∑

i=1

g(Xi)

• provided that Markov chain is ergodic
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Introduction, continued

Building block: Metropolis-Hastings (MH) algorithm

• proposal distributionsq(.|x), x ∈ D,
generating possible transitions of the Markov
chain fromx to y

• accepted (otherwise rejected) with probability

α(x, y) = min

{

1,
π(y)q(x|y)

π(x)q(y|x)

}
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Introduction, continued

• performance of MH depends on choice of
proposal densities

• optimal acceptance rates known for various
specific MCMC algorithms
(Roberts and Rosenthal, 2001)

• but tuning by hand is time-consuming

• adaptive MCMC: automatic tuning "on the fly"

• Warning: adaptation can easily perturb ergodicity
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Review of Adaptive Techniques

• pilot adaptation

• regeneration times (Brockwell and Kadane 2005)

• finite horizon, kernel density estimate
Normal Kernel Coupler, Warnes (2001)

• infinite adaptation of random walk MH
using all previous states, Haario et al. (2001)

• coupling and ergodicity of adaptive MCMC
Roberts and Rosenthal (2007)

• Andrieu and Thoms (2008): vanishing adaptation
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MH with Adpative Proposals

Idea:

• proposal as close to the targetπ as possible
• lastm samples provide info aboutπ
• use kernel density estimate based on lastm

samples
• finite horizon technique
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Normal Kernel Coupler
Suggested by Warnes (2001):

Let x(t)
1 , . . . , x

(t)
m be set ofm current states

• Select componentx(t)
i to update

• Propose new candidateyi:

q(yi|x
(t)) =

1

m

m∑

j=1

N(yi|x
(t)
j , h2V )
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Here: MH-within-Gibbs
• newtarget pdf on product spaceDm

π(x1, . . . , xm) =
∏m

i=1 π(xi)
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Here: MH-within-Gibbs
• newtarget pdf on product spaceDm

π(x1, . . . , xm) =
∏m

i=1 π(xi)

• Gibbs sampler: in cyclet, iterationi draw from

π(xi|x
(t)
−i) = π(xi) using MH

• generate candidatey from proposalq(.|x(t)
−i)

• accept with probability

α(x
(t)
i , y) = min

{

1,
π(y)q(x

(t)
i |x

(t)
−i)

π(x
(t)
i )q(y|x

(t)
−i)

}

asπ(y|x
(t)
−i) = π(y)
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Ergodicity

Roberts and Rosenthal (2006)
Harris recurrence of MH-within-Gibbs algorithms:

• r−dim. integral ofπ has finite Lebesque integral
over every r-dim. coordinate hyperplane ofDm,
1 ≤ r ≤ m

• full chain and all subchains areφ-irreducible
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1-Dimensional Target
Here: 2 novel principles

• ATRIMS:
Adaptive Triangular Metropolis Sampling

• ATRAMS:
Adaptive Trapezoidal Metropolis Sampling
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1-Dimensional Target
Here: 2 novel principles

• ATRIMS:
Adaptive Triangular Metropolis Sampling

• ATRAMS:
Adaptive Trapezoidal Metropolis Sampling

Compare these to
• ARMS (Gilks et al. 1995): Adaptive Rejection

Metropolis Sampling
standard black-box technique

• NKC (Warnes, 2001): Normal Kernel Coupler
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ATRIMS

Sayπ target pdf on 1-dim. spaceD

already sampled:x(t+1)
1 , . . . , x

(t+1)
i−1 , x

(t)
i+1, . . . , x

(t)
m

denote those by:x1, . . . , xm−1

Perron and Mengersen (2001):
any pdf can be approximated by a mixture of
triangular distributions
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Triangular Densities
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ATRIMS

q(x|x1, . . . , xm−1) =







w0E1(x), x ∈ (−∞, x1),

wiTi(x) + wi+1Ti+1(x), x ∈ [xi, xi+1),

wmEm−1(x), x ∈ [xm−1,∞).

with weights:

w = {
1

m
,

1

2m
,

1

m
, . . . ,

1

m
,

1

2m
,

1

m︸ ︷︷ ︸
m+1

}.
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ATRIMS

Advantages over NKC and ARMS:
• sampling from triangular/exponential is fast
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ATRIMS

Advantages over NKC and ARMS:
• sampling from triangular/exponential is fast
• evaluation of proposal only requires evaluation of

2 mixture components
• increasing the horizonm won’t increase

evaluation effort
• starting knots in ARMS may not depend on

previously sampled points (Gilks et al, 1997)
• ARMS requires finite support interval
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ATRAMS

Idea:use that
• the functional form of target pdf is known
• the target pdf already evaluated atm − 1 points

=⇒ piecewise linear/trapezoidal approximation
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Trapezoidal Densities
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ATRAMS

q(x|x1, . . . , xm−1) =







w0E
′
1(x), if x ∈ (−∞, x1),

wiT
′
i (x), if x ∈ [xi, xi+1), i = 1, 2, . . . , m −

wm−1E
′
m−1(x), if x ∈ [xm−1,∞).

with weights:

wi =







1
m

, for i = 0,
m−2
m

si

S
, for i = 1, 2, . . . , m − 2,

1
m

, for i = m − 1.
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ATRAMS

Remarks:
• sampling from piecewise linear/exponential is

fast
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ATRAMS

Remarks:
• sampling from piecewise linear/exponential is

fast
• increasing the horizonm won’t increase

evaluation effort
• abscissae in subsequent steps are based on

previous Gibbs iterations

Extension to multivariate target: ATRIMS/ATRAMS

within Gibbs sampling
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Simulation Study
Compare ATRIMS and ATRAMS to ARMS and NKC
to sample from univariate distributions:

• Gumbel(0,10)
• Logistic(0,2)

• 0.3 ∗ N(5, 12) + 0.7 ∗ N(10, 32)

• 0.3 ∗N(2, 12) + 0.6 ∗N(20, 32) + 0.1 ∗N(35, 12)
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Simulation Study, continued
and to sample from multivariate distributions:

• 0.5N2
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• d = 4 andd = 20-dim. Normal:
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Simulation Study, continued

Integrated Autocorrelation Times of

Target Distribution ARMS NKC ATRIMS ATRAMS

Gumbel(0,10) 0.97 1.21 1.65 1.83

Logistic(0,2) 1.31 1.99 2.46 2.04

Bimodal Normal 1.10 1.25 1.41 1.56

Trimodal Normal 1.79 1.70 1.60 1.81

Bivariate Mixed Normal

X 2.94 3.02 3.05 3.24

Y 2.96 3.00 3.07 3.21

4-D Narrow Normal

X1 2.93 2.92 2.96 3.05

X2 2.89 2.89 2.94 3.01

X3 2.93 2.91 2.91 3.04

X4 2.91 2.92 2.96 3.07

20-D Narrow Normal 2.91 2.95 2.98 3.04
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Simulation Study, continued

CPU time in seconds for 10,000 samples of

Target Distribution ARMS NKC ATRIMS ATRAMS

Gumbel(0,10) 1.28 9.9 0.71 1.03

Logistic(0,2) 0.96 10.1 0.74 0.85

Bimodal Normal 1.60 10.2 0.95 1.33

Trimodal Normal 4.51 9.8 1.34 1.66

Bivariate Mixed Normal 10.06 16.51 4.99 6.04

4-D Narrow Normal 10.00 18.62 3.33 4.41

20-D Narrow Normal 95.67 141.35 68.84 70.20
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Case Study
General state-space model
Kuensch (2001), West and Harrison (1997)

Observation equation:

yt = ht(θt, vt)

State equation:

θt = gt(θt−1, ut)
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Computation

Carlin et al. (1992): Gibbs sampler for nonlinear
non-Gaussian state-space models

Gibbs sampler combined with ARMS used to fit popu-

lation dynamics models for fisheries stock assessment,

e.g. Meyer and Millar (1999)
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Fisheries Stock Assessment
Yellowfin tuna data from Pella and Tomlinson (1969)

Year Catch CPUE

1934 60.9 10361

1935 72.3 11484

1936 78.4 11571

1937 91.5 11116

1938 78.3 11463

1939 110.4 10528

1940 114.6 10609

1941 76.8 8018

1942 42.0 7040
...

...
...

1965 180.1 4166

1966 182.3 4513

1967 178.9 5292

Biometrics on the Lake, Taupo, NZ, December 2009 – p.25/32



Biomass Dynamics Model
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Biomass Dynamics Model

new biomass
• = old biomass
• + growth
• + recruitment
• − natural mortality
• − catch
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Delay Difference Model

Observation equation:

yt = Qθt + vt vt ∼ N(0, wtτ
2)

State equation:

θt+1 = (1 + ρ)e−M(θt − kCt) −

ρ e−2M
(θt − kCt)

θt

(θt−1 − kCt−1) +

r

(

1 − ρω e−M
(θt − kCt)

θt

)

+ ut+1, ut+1 ∼ N(0, σ2)
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Model Parameters

39 unknown parameters to be estimated

• relative biomassesθt, t = 1, . . . , N = 34

• population parametersk, Q, r, σ2, τ 2

Informative priors
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Full Conditionals

E.g., full conditional posterior density forr:

p(r | θt, k, Q, σ2, τ2) ∝ p(r)

N∏

t=2

p(θt | θt−1, θt−2, k, r, σ2)

∝
1

r
exp

(

−
(log r − µr)

2

2σ2
r

−
1

2σ2

N∑

t=2

(θt − g(θt))
2

)
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Comparison
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Discussion
• general class of adaptive MH algorithms
• finite horizon techniques, usem previous samples
• adaptivity via MH-within-Gibbs
• for univariate target: ATRIMS and ATRAMS
• local support of triangular/trapezoidal density

results in less function evaluations than NKC
• starting knots of proposal allowed to depend on

previously sampled points in contrast to ARMS
• work in progress: multivariate proposals
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