Bayesian estimation of multinomial probabilities with non-unique cell classification: Application to trisomy 21 data

Nokuthaba Sibanda

School of Mathematics, Statistics & Operations Research Victoria University

2 December 2009

KORKA SERKER ORA

Acknowledgements

KORKA SERKER ORA

Prof Stephanie Sherman, Emory University, Atlanta, USA

A/Prof Eleanor Feingold, University of Pittsburgh, Pennsylvania, USA

Ray Tobler, Victoria University Wellington

Introduction

KO KKOK KEK KEK LE I KORO

- Motivating problem
- Single locus analysis
- Multilocus analysis

Meiotic nondisjunction

Meiotic nondisjunction is the failure of chromosomes to separate during meiosis. This leads to aneuploid gametes, and subsequently trisomy in the offspring.

Successful disjunction

KORKA SERKER ORA

Meiosis I nondisjunction

Meiosis II nondisjunction

Motivating problem

Estimation of probabilities of nondisjunction in males and females at the first and second stage of meiosis. Problem: When looking at genotype data from one locus or more, it may not be possible to determine exactly in which parent and at what stage nondisjunction occurred.

$$
m_i = \begin{array}{cc} 12 \\ p_i = \end{array}, p_i = \begin{array}{cc} 11 \\ 112 \end{array}
$$

Motivating problem

Estimation of probabilities of nondisjunction in males and females at the first and second stage of meiosis. Problem: When looking at genotype data from one locus or more, it may not be possible to determine exactly in which parent and at what stage nondisjunction occurred.

$$
m_i = \begin{array}{c} 12 \\ 13 \end{array}, p_i = \begin{array}{c} 11 \\ 12 \end{array}, c_i = \begin{array}{c} 112 \\ 113 \end{array}
$$

Missing data?

KORKA SERKER ORA

The problem can be viewed as a two-way contingency table with missing observations for families where the origin of non-disjunction cannot be uniquely identified.

Method: Imputation and data augmentation (Tanner and Wong, 1987).

Data

Genotype data, from Single Nucleotide Polymorphisms (SNPs) and Short Tandem Repeats (STRs) proximal to the centromere, for a child with trisomy 21 and their mother and father is used.

Data were available at 100 positions on the long arm of chromosome 21 for 350 families with origin of non-disjunction confirmed as follows:

Notation

KORKA SERKER ORA

For a SNP, define $G = \{11, 12, 22\}$ $C = \{111, 112, 122, 222\},\$ where $\{1, 2\} = \{A, G\}$ or $\{T, C\}$.

For a family i, the data available are $\{c_i, m_i, p_i\}$, where $c_i \in \mathcal{C}$, $m_i, p_i \in \mathcal{G}$.

 c_i is completely determined by the parental and meiotic stage of nondisjunction.

Bayesian [estimation of](#page-0-0) multinomial probabilities

Notation

KORKA SERKER ORA

For a SNP, define $\mathcal{G} = \{11, 12, 22\}$ $C = \{111, 112, 122, 222\},\$ where $\{1, 2\} = \{A, G\}$ or $\{T, C\}$.

For a family i, the data available are $\{c_i, m_i, p_i\}$, where $c_i \in \mathcal{C}$, $m_i, p_i \in \mathcal{G}$.

 c_i is completely determined by the parental and meiotic stage of nondisjunction.

Is it possible to use c_i, m_i and p_i at given loci to estimate nondisjunction probabilities?

Bayesian [estimation of](#page-0-0) multinomial probabilities

Nondisjunction probabilities

KORKA SERKER ORA

Define events

 M_1 = maternal meiosis I nondisjunction = E_1 M_{II} = maternal meiosis II nondisjunction = E_2 P_1 = paternal meiosis I nondisjunction = E_3 P_{II} = paternal meiosis II nondisjunction = E_4

The aim is to estimate the probability vector $\phi_1 = \Pr(E_1), \phi_2 = \Pr(E_2), \phi_3 = \Pr(E_3)$ and $\phi_\textsf{4}=\textsf{Pr}(E_\textsf{4})=1-\sum_{j=1}^3\phi_j.$

Single locus exact likelihood

The exact likelihood for a set of *n* independent families is

$$
L(\phi | \mathbf{c}, \mathbf{m}, \mathbf{p}) = \prod_{i=1}^{n} Pr(c_i | m_i, p_i, \phi) Pr(m_i, p_i)
$$

$$
\propto \phi_1^{n_1} \phi_2^{n_2} \phi_3^{n_3} \phi_4^{n_4} \prod_{i=1}^{n - \sum_{j=1}^{4} n_j} \sum_{j=1}^{n} a_{ij} \phi_j,
$$

where n_j is the number of families in which $Pr(c_i|m_i, p_i, E_k) = 0 \,\,\forall k \neq j$ and $E_j \in \mathcal{E} = \{M_l, M_{ll}, P_l, P_{ll}\}.$

For example, consider a family with $c_i = 112$, $m_i = 11$ and $p_i=12$. Then Pr $(c_i|\pmb{\phi}, m_i, p_i)=(\frac{1}{2})$ $rac{1}{2}\phi_1 + \frac{1}{2}$ $(\frac{1}{2}\phi_2 + \phi_3).$

Augmented data likelihood

Introduce a latent variable Z , the event assigned to a family from \mathcal{E} .

For the i^{th} family, Z_i is selected with probability $Pr(Z_i = E_j | \phi, c_i, m_i, p_i) = Pr(E_j | \phi, c_i, m_i, p_i)$ for a given j . For example, consider a family with $c_i = 112$, $m_i = 11$, $p_i = 12$ and $\mathsf{Pr}(c_i | \pmb{\phi}, m_i, p_i) = \bigl(\frac{1}{2}\bigr)$ $rac{1}{2}\phi_1 + \frac{1}{2}$ $(\frac{1}{2}\phi_2+\phi_3)$. Here Z_i takes the value E_3 , say, with probability $\frac{\phi_3}{\frac{1}{2}\phi_1+\frac{1}{2}\phi_2+\phi_3}$. The augmented data likelihood is

$$
L^*(\phi|\mathbf{Z}, \mathbf{c}, \mathbf{m}, \mathbf{p}) = \prod_{i=1}^n \prod_{j=1}^4 a_{ij} I(Z_i = E_j) \phi_j \quad \propto \quad \prod_{j=1}^4 \phi_j^{n_j^*},
$$

where $\textbf{Z} = \{Z_i: i = 1, \ldots, n\}, \text{ } n_j^*$ is the number of families for which $Z_i = E_j$.

KORK ERKER ADE YOUR

Posterior distribution

A conjugate prior, the Dirichlet distribution, was used for both likelihood functions. A Dirichlet distribution has density function $\pi\left(\phi_1,\ldots,\phi_4\right)\propto\phi_1^{\alpha_1-1}\ldots\phi_4^{\alpha_4-1}$ for $\sum_{j=1}^4\phi_j=1$ and $\alpha_j > 0$, $j = 1, \ldots, 4$. The resulting posterior densities were

$$
\pi (\phi | \mathbf{c}, \mathbf{m}, \mathbf{p}) \propto \prod_{\substack{j=1 \ \pi^*}}^4 \phi_j^{n_j + \alpha_j - 1} \prod_{\substack{j=1 \ \pi^*}}^{n - \sum_{j=1}^4 n_j} \sum_{j=1}^4 a_{ij} \phi_j
$$

$$
\pi^* (\phi | \mathbf{Z}, \mathbf{c}, \mathbf{m}, \mathbf{p}) \propto \prod_{j=1}^4 \phi_j^{n_j^* + \alpha_j - 1}.
$$

The terms $(\alpha_i - 1)$, $j = 1, \ldots, 4$, in the prior, can be interpreted as the a priori expected numbers of families in which only event E_j occurred out of a total of $\sum_{j=1}^4 (\alpha_j-1)$ families.

MCMC sampling

KORKA SERKER ORA

A Metropolis-Hastings sampler combined with a change of variable method was used to generate samples from $\pi(\boldsymbol{\phi}|\mathbf{c},\mathbf{m},\mathbf{p}).$

Gibbs sampler steps were used to sample Z and ϕ from their full conditional distributions.

SNP rs2259403, 13.62Mbp from centromere on chromosome 21q

305 families with origin of non-disjunction as follows:

KORKA SERKER ORA

Estimation using SNP rs2259403

Uniform prior with $\alpha_1 = \ldots = \alpha_4 = 1$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

Estimation using SNP rs2259403

Marginal posterior distributions and 95% posterior credible intervals for prior with $\alpha_1 = \ldots = \alpha_4 = 5$ applied to augmented data likelihood.**KORKA SERKER ORA**

STR D21S215, 13.72Mbp from centromere

STR with 10 allelles - more informative.

291 families with origin of non-disjunction as follows:

	Stage		
Parent			Total
Maternal	$208(71.5\%)$	79 (27.1%)	287 (98.6%)
Paternal	$1(0.4\%)$	$3(1.0\%)$	4 (1.3%)

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

Estimation using STR D21S215

Uniform prior with $\alpha_1 = \ldots = \alpha_4 = 1$

K ロ ▶ K @ ▶ K 할 X X 할 X | 할 X 1 9 Q Q ^

Estimation using STR D21S215

Marginal posterior distributions and 95% posterior credible intervals for prior with $\alpha_1 = \ldots = \alpha_4 = 5$ applied to augmented data likelihood.**KORKA SERKER ORA**

Multilocus analysis

KORK ERKER ADE YOUR

Use information from multiple loci simultaneously. Incomplete reporting for different families at different loci e.g.

Use as much of the available information as possible

- If data available at 2 or more loci, select the most informative locus.
- Use data augmentation to estimate ϕ_1, \ldots, ϕ_4 .

Results for three loci

- Combined information for 2 SNPs and 1 STR closest to the centromere.
- All families had complete genotype reporting (mother, father and child) on at least one of these loci.

Uniform prior with $\alpha_1 = \ldots = \alpha_4 = 1$

Results for three loci

Marginal posterior distributions and 95% posterior credible intervals for prior with $\alpha_1 = \ldots = \alpha_4 = 5$ $\alpha_1 = \ldots = \alpha_4 = 5$ [.](#page-26-0)

References

Bayesian [estimation of](#page-0-0) multinomial probabilities

- **1** Ott J (1991). Analysis of human genetic linkage. 2nd ed. John Hopkins University Press, Baltimore.
- 2 Smith CAB, Stephens DA (1997). Simple likelihood and probability calculations for linkage analysis. In Genetic Mapping of Disease Genes.
- **3** Swartz T, Haitovsky, Vexler A and Yang T (2004). Bayesian identifiability and misclassification in multinomial data. The Canadian Journal of Statistics 32: 285-302.
- 4 Tanner, M. A., & Wong, W. H. (1987). The calculation of posterior distributions by data augmentation (with discussion). Journal of the American Statistical Association, 82, 528-550.