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I. Local Odds Ratios

– For an ordinary 2× c contingency table,

Responses
Group 1 2 3 · · · c−1 c
1 π1|1 π2|1 π3|1 πc−1|1 πc|1
2 π1|2 π2|2 π3|2 πc−1|2 πc|2

• Theπ j|i is the probability of response on levelj for a subject in rowi.

• ∑ j π j|i = 1 for all j = 1, 2.

• The local odds ratio is defined by

Ψ j =
π j|1π( j+1)|2

π j|2π( j+1)|1
, j = 1, . . . ,c−1.
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– For a stratified 2× c×K contingency table, thekth table:

Responses
Group 1 2 3 · · · c−1 c
1 π1|1k π2|1k π3|1k πc−1|1k πc|1k

2 π1|2k π2|2k π3|2k πc−1|2k πc|2k

• The local odds ratio is defined by

Ψ j|k =
π j|1kπ( j+1)|2k

π j|2kπ( j+1)|1k
, j = 1, . . . ,c−1 andk = 1, . . . ,K

• It shows the associations between the group and responses controlling for a possibly
confounding variable.

• When the stratified table is highly sparse, we often summarise the association across
strata by assuming the common odds ratios, i.e.,

Ψ j = Ψ j|1 = · · · = Ψ j|K
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• The cell counts in the contingency table described above aremutually exclusive, i.e., all
subjects must fit into one and only one cell.

– Multiple Responses

• Non-mutually exclusive cell counts occurs when respondents may select any number out
of c outcome categories.

– Example

The students of a second-year applied statistics course were asked to tick their favourite
bar in Wellington. The study recorded the features of the bars (eg., “drink deals”, “pool
tables”, and “sports TV”). Each student also answered some personal questions (such as
major, gender, working status, smoking status, etc). Each bar may have more than one
feature.

We are interested to find the association between working status and preferred features of
the bars controlling on students’ majors.

The following table shows the 2×3×6 “marginal” contingency table (for 6 different ma-
jors) and the “complete” information on the multiple response profile.
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Response Profile
1 0 0 0 0 1 1 1 1

items total 2 0 0 1 1 0 0 1 1
major work 1 2 3 students 3 0 1 0 1 0 1 0 1
BIOL

yes 1 0 0 1 0 0 0 0 1 0 0 0
no 1 1 0 1 0 0 0 0 0 0 1 0

BMAR
yes 11 11 4 13 0 0 2 0 2 0 5 4
no 1 1 1 1 0 0 0 0 0 0 0 1

EBIO
yes 7 8 4 10 1 0 2 0 1 0 2 4
no 3 4 5 6 1 1 0 1 0 0 0 3

OPRE
yes 0 0 1 1 0 1 0 0 0 0 0 0
no 0 0 0 1 1 0 0 0 0 0 0 0

PSYC
yes 2 2 2 3 0 1 0 0 0 0 1 1
no 2 2 1 3 0 0 1 0 1 0 0 1

STAT
yes 1 1 1 1 0 0 0 0 0 0 0 1
no 1 1 1 1 0 0 0 0 0 0 0 1

1: drink deals, 2: pool tables, 3: sports TV
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2. Maximum Likelihood (ML) Approach

Assuming the common local odds ratios for all strata, the model can be expressed as:

log

(

π j|1kπ( j+1)|2k

π j|2kπ( j+1)|1k

)

= β j.

whereβ j = logΨ j. The model is not a standard logit model.

– The ML inference for the model requires that the cell probabilities of the complete ta-
ble are estimated under the constraints imposed by the model. The observed frequency
distribution from the complete table follows a multinomialdistribution.

– Lang and Agresti (1994) proposed the fitting algorithm based on the Lagrange multiplier
technique. (http://www.stat.uiowa.edu/∼jblang/)

– The modified algorithm was given by Bergsma (1997) and Bergsma,et.al. (2009).
(http://www.cmm.st)
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– The model can be expressed as the form of

C logAπ = Xβ

whereπ is the vector of joint probabilities from the complete table.

– The matrixA contains 0 and 1 entries in such a pattern that when applied toπ it forms
the relevant marginal probabilities{π j|ik} to which the model applies.

– The matrixC contains 0, 1 and -1 entries in such a pattern that when applied to the log
marginal probabilities, it forms the log local odds ratios for the model.

– It often has convergence problems, especially for highly sparse data.
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3. Mantel–Haenszel (MH) Approach

Let

X j|ik: number of subjects that select itemj = 1, . . . ,c in row i = 1,2
and stratumk = 1, . . . ,K in the marginal table.

nik: number of subjects in rowi and stratumk
Nk = n1k +n2k: total number of subjects in stratumk.

The ordinary Mantel-Haenszel estimatorΨ̂ j has the following form

Ψ̂ j =
∑K

k=1 X j|1kX( j+1)|2k/Nk

∑K
k=1 X( j+1)|1kX j|2k/Nk

For the multiple responses, we can show that

– The ordinary MH estimator̂Ψ j is dually consistent,
i.e. consistent under thelarge-samplelimiting model (K is bounded while the number of
subjects per stratum goes to infinity)
and thesparse-datalimiting model (K goes to infinity with sample size, but the number of
subjects per stratum remains fixed).
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– For a marginal table with mutually exclusive cell counts, Greenland (1989) proposed the
dually consistent variance and covariance estimators for (Ψ̂ j, ∀ j = 1, . . . ,c−1)

– For multiple responses, the cell counts in the marginal table are not mutually exclusive.
The dually consistency property for Greenland’s estimators doesn’t hold anymore.

– We proposed the new variance and covariance estimators that are dually consistent under
both multiple responses and ordinary cases.

– Our estimator= (Greenland’s estimator + an additional term). When the cellcounts are
mutually exclusive, the additional term equals 0.

– Usually, we use log odds ratio estimators, eg.

L12 = logΨ̂1

L23 = logΨ̂2

L13 = L12+L23
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4. Example

We consider 3 items (bar features)

1: drink deals
2: pool tables
3: sports TV

– The MH approach gives

items (j, h) L jh standard error
items (1, 2) 0.14 0.24
items (1, 3) 0.60 0.30
items (2, 3) 0.46 0.28

– The working status has significant effects on the choice between features 1 (“drink deals”)
and 3 (“sports TV”).

– The odds of choosing a favourite bar offering “drink deals”rather than “sports TV” for a
student with part/full-time jobs are exp(0.60) = 1.83 times the odds for a student without
jobs.

11



– The ML approach fails to converge for this example.

– We have tried both ML and MH approaches for another example in which the large-
sample limiting model seems reasonable. The ML approach converges. Both approaches
give very similar estimates when data are not highly sparse.
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5. Simulation Results

We conducted a simulation study to investigate the performance of the MH estimators loĝΨ
and the proposed new variance and covariance estimators.

– Choosec = 3.

– For givenΨ j, we fix the marginal probabilities of the first row by settingπ j|1k = 0.50 for
all j = 1, . . . ,c and findπ j|2k usingΨ j. For simplicity, we also setΨ = Ψ1, Ψ2 = 1 and
N1 = · · · = NK .

– We define the pairwise dependency between itemsj andh in the form of an odds ratio
θ jh|ik:

θ jh|ik =
P(Yj = 1,Yh = 1|ik)P(Yj = 0,Yh = 0|ik)
P(Yj = 0,Yh = 1|ik)P(Yj = 1,Yh = 0|ik)

,

whereYj indicate whether a subject selects itemj.
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– From the marginal probabilities{π j|ik, j = 1, . . . ,c}
and the pairwise dependency odds ratios{θ jh|ik, j 6= h = 1, . . . ,c},
we can compute the unique set of pairwise probabilities{π jh|ik, j 6= h = 1, . . . ,c}.

– Then the 2c joint probabilities{P(Y1 = s1, . . . ,Yc = sc|ik),s j = 0,1; j = 1, . . . ,c} in the
complete table can be computed from the probabilities{π j|ik, j = 1, . . . ,c} and{π jh|ik, j 6=
h = 1, . . . ,c}, if a feasible solution exists Lee (1993).
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Simulation results for log odds ratio estimatorsL when the true odds ratioΨ = 4 (i.e.,
logΨ = 1.386294)

mean m.s.e.
K Nk logΨ θ L12,L13 L12,L13

1 500 1.386 0 1.400,1.399 0.0724,0.072
1 500 1.386 1 1.394,1.393 0.0338,0.0341
1 500 1.386 10 1.394,1.394 0.024,0.0236
10 50 1.386 0 1.401,1.401 0.0772,0.0763
10 50 1.386 1 1.393,1.393 0.0357,0.0362
10 50 1.386 10 1.395,1.396 0.0258,0.0258
50 10 1.386 0 1.404,1.410 0.0962,0.096
50 10 1.386 1 1.399,1.398 0.0454,0.046
50 10 1.386 10 1.399,1.400 0.0354,0.0352
100 5 1.386 0 1.421,1.420 0.133,0.132
100 5 1.386 1 1.401,1.399 0.0623,0.0617
100 5 1.386 10 1.406,1.405 0.0482,0.0483
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Simulation results for the variance and covariance estimators of the log odds ratio estima-
tors:

Var(L12),Cov(L12,L13) Estimates
Empirical New Proposed Greenland’s

K Nk θ 100×mean 100×mean 100×mean
(10000×m.s.e.) (10000×m.s.e.)

1 500 0 7.219,5.062 7.056,4.936 7.056,4.936
(0.552,0.568) (0.552,0.568)

1 500 1 3.378,2.474 3.354,2.440 4.965,3.251
(0.111,0.0963) (2.616,0.690)

1 500 10 2.392,1.914 2.374,1.905 4.964,3.250
(0.0925,0.0803) (6.726,1.870)

100 5 0 13.231,4.025 12.686,3.855 12.686,3.855
(9.618,0.734) (9.618,0.734)

100 5 1 6.205,3.163 6.015,3.072 8.871,4.097
(1.474,0.518) (8.859,1.144)

100 5 10 4.781,3.253 4.722,3.215 9.654,5.248
(1.335,0.767) (25.929,4.608)

Note: For multiple responses,θ > 0. Defineθ = 0 for the cases that each subjects can only select one item.
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