Local Odds Ratio Estimation for Stratified Contingency Tables with Multiple
Responses

lvy Liut and Thomas Suesse

1 School of Mathematics, Statistics and Operations Research
Victoria University of WEllington
WEllington, New Zealand

2 School of Mathematics and Applied Statistics
University of Wollongong
Wobllongong, Australia

The International Biometric Society Australasian Regiamférence
December 2009



1.

Local Odds Ratios

— Highly Stratified Contingency Tables with Multiple Resseis

Maximum Likelihood (ML) Approach

Mantel-Haenszel (MH) Approach

Example

. Simulation Results



|. Local Odds Ratios

— For an ordinary Z c contingency table,

Responses
Group| 1 2 3 - c¢—1 C
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e Ther; is the probability of response on levgfor a subject in row.
o> ;mi=1forall j=1,2.
e The local odds ratio is defined by
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— For a stratified Z ¢ x K contingency table, thieth table:

Responses
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e The local odds ratio is defined by
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e It shows the associations between the group and responm@slling for a possibly
confounding variable.

e When the stratified table is highly sparse, we often summahs association across
strata by assuming the common odds ratios, i.e.,



e The cell counts in the contingency table described abovenataally exclusive, i.e., all
subjects must fit into one and only one cell.

— Multiple Responses

e Non-mutually exclusive cell counts occurs when resporgiataty select any number out
of c outcome categories.

— Example

The students of a second-year applied statistics course asked to tick their favourite
bar in Wellington. The study recorded the features of the lpag., “drink deals”, “pool
tables”, and “sports TV”). Each student also answered soensgopal questions (such as
major, gender, working status, smoking status, etc). Eachriay have more than one
feature.

We are interested to find the association between workirigsseand preferred features of
the bars controlling on students’ majors.

The following table shows the 2 3 x 6 “marginal” contingency table (for 6 different ma-
jors) and the “complete” information on the multiple respemrofile.



Response Profile

1 0 0 O O 1 1 1 1
items total 2 0 0 1 1 0o o0 1 1
major work 1 2 3 students 3 0 1 O 1 O 1 0 1
BIOL
yes 1 O O 1 O 0 0O O 1 o0 o0 o
no 1 1 O 1 O 0 0O O O O 1 o
BMAR
yes 11 11 4 13 O 0 2 0 2 0 5 4
no 1 1 1 1 O 0 0O O O o o0 1
EBIO
yes 7 8 4 10 1 0 2 O 1 0 2 4
no 3 4 5 6 1 1 0 1 0 0O o0 3
OPRE
yes 0 0O 1 1 O 1 0 0O O O o0 o
no 0 O O 1 1 0 0O O O O O o
PSYC
yes 2 2 2 3 O 1 0 0O 0o o0 1 1
no 2 2 1 3 O 0 1 0 1 0 0 1
STAT
yes 1 1 1 1 O 0 0O O O O o0 1
no 1 1 1 1 O 0 0O O O o o0 1

1: drink deals, 2: pool tables, 3: sports TV



2. Maximum Likelihood (ML) Approach

Assuming the common local odds ratios for all strata, theehodn be expressed as:
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wherefj = logW;. The model is not a standard logit model.

— The ML inference for the model requires that the cell praligs of the complete ta-
ble are estimated under the constraints imposed by the mdded observed frequency
distribution from the complete table follows a multinomaastribution.

— Lang and Agresti (1994) proposed the fitting algorithm dasethe Lagrange multiplier
technique. (http://www.stat.uiowa.edyblang/)

— The modified algorithm was given by Bergsma (1997) and Beaget.al. (2009).
(http://www.cmm.st)



— The model can be expressed as the form of
ClogAmr= X[

wherert is the vector of joint probabilities from the complete table

— The matrixA contains 0 and 1 entries in such a pattern that when appliedttforms
the relevant marginal probabilitigsr i } to which the model applies.

— The matrixC contains O, 1 and -1 entries in such a pattern that when apiighe log
marginal probabilities, it forms the log local odds ratios the model.

— It often has convergence problems, especially for higb@rse data.



3. Mantel-Haenszel (MH) Approach

Let
Xjik: number of subjects that select itgm=1,...,cinrowi=1,2
and stratunk = 1,...,K in the marginal table.
Nik: number of subjects in rowand stratunk

Nk = N+ npk.  total number of subjects in stratukn

The ordinary Mantel-Haenszel estimatBy has the following form

S k1 X 2kX( 1) 26/ Nk
3 i1 X1 1K 2/ Ni

¢, -

For the multiple responses, we can show that

— The ordinary MH estimatd¥; is dually consistent,

l.e. consistent under tHarge-samplelimiting model K is bounded while the number of
subjects per stratum goes to infinity)

and thesparse-datalimiting model K goes to infinity with sample size, but the number of
subjects per stratum remains fixed).



— For a marginal table with mutually exclusive cell countseé&hland (1989) proposed the
dually consistent variance and covariance estimators#fpry{j =1,...,c—1)

— For multiple responses, the cell counts in the margindétate not mutually exclusive.
The dually consistency property for Greenland’s estinsatloresn’t hold anymore.

— We proposed the new variance and covariance estimatdr@réhdually consistent under
both multiple responses and ordinary cases.

— Our estimatore= (Greenland’s estimator + an additional term). When theamlints are
mutually exclusive, the additional term equals O.

— Usually, we use log odds ratio estimators, eg.

L1o=log®¥;
Loz = logWs
Liz=Lio+ L3
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4. Example

We consider 3 items (bar features)

1: drink deals
2. pool tables
3: sports TV

— The MH approach gives

items (J, h) | Ljn standard error
items (1, 2)| 0.14 0.24
items (1, 3)| 0.60 0.30
items (2, 3)| 0.46 0.28

— The working status has significant effects on the choicedn features 1 (“drink deals”)
and 3 (“sports TV”).

— The odds of choosing a favourite bar offering “drink deatgher than “sports TV” for a
student with part/full-time jobs are ep60) = 1.83 times the odds for a student without
jobs.
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— The ML approach fails to converge for this example.

— We have tried both ML and MH approaches for another exanmmplghich the large-
sample limiting model seems reasonable. The ML approacvecges. Both approaches
give very similar estimates when data are not highly sparse.
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5. Simulation Results

We conducted a simulation study to investigate the perfaoaaf the MH estimators 3¢
and the proposed new variance and covariance estimators.

— Choose = 3.

— For givenWj, we fix the marginal probabilities of the first row by settirgy, = 0.50 for
all j=1,...,cand findry usingW¥;. For simplicity, we also se¥ = W1, W, =1 and
Ni=--- = Nk.
— We define the pairwise dependency between itgmusdh in the form of an odds ratio
Oiniik:

jhjik

9. _ P(Y; = 1,Yy = 1]ik)P(Y; = 0, Y, = 0[ik)
k= Py, = 0, = 1]ik)P(Yj = 1, Y, = 0[ik)’

whereY; indicate whether a subject selects it¢m
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— From the marginal probabilitiegjix, j = 1,...,c}
and the pairwise dependency odds rafifg,ik, ] # h=1,...,c},
we can compute the unique set of pairwise probabil{®sk, | #h=1,...,c}.

— Then the 2 joint probabilities{P(Y1 = s1,...,Yc = &|ik),s; = 0,1;] = 1,...,c} in the
complete table can be computed from the probabilg®sy, j = 1,...,c} and{ ik, ] #
h=1,...,c}, if afeasible solution exists Lee (1993).
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Simulation results for log odds ratio estimatdravhen the true odds rati¥ = 4 (i.e.,

logW = 1.386294)

mean m.s.e.
K Ny log¥ 6 L12,L13 L12,L13

1 500 1386 0 | 1.400,1.399 007240.072
1 500 1386 1 | 1.3941.393 003380.0341
1 500 1386 10| 1.3941.394 0024,0.0236
10 50 1386 0 | 14011401 Q0/7720.0763
10 50 1386 1 | 1.3931.393 Q03570.0362
10 50 1386 10| 1.3951.396 0Q02580.0258
50 10 1386 0 | 1.4041.410 Q09620.096
50 10 1386 1 | 1.3991.398 004540.046
50 10 1386 10| 1.3991.400 Q03540.0352
100 5 1386 0 | 1.4211.420 Q133 0.132
100 5 1386 1 | 1.4011.399 0Q06230.0617
100 5 1386 10| 1.4061.405 Q04820.0483
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Simulation results for the variance and covariance estimaif the log odds ratio estima-
tors:

Var(L12),Cov(L12,L13) Estimates

Empirical New Proposed Greenland’s
K Ny 6 100x mean 10&mean 10&mean
(10000xm.s.e.) (10008 m.s.e.)
1 500 0O | 7.2195.062 7.056,4.936 7.056,4.936
(0.5520.568) (0552 0.568)
1 500 1 | 33782474 3354,2.440 4965 3.251
(0.111,0.0963) (2616 0.690)
1 500 10| 23921914 2374,1.905 4964,3.250

(0.09250.0803)  (6726,1.870)

100 5 0 | 132314025  126863.855 12686,3.855
(9.6180.734)  (96180.734)

100 5 1| 6.2053.163 6015,3.072 8871,4.097
(1474,0.518) (8859 1.144)
100 5 10| 4.7813.253 4722 3.215 9654, 5.248

(1.3350.767) (25929 4.608)

Note: For multiple response8,> 0. Defined = 0 for the cases that each subjects can only select one item.
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