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Introduction

In case-control sampling, we draw separate samples of cases (subjects
with a condition of interest) and controls (subjects without the
conditions) from some population of interest:

− very efficient when cases are relatively rare;

− widely used in practice.

An appreciable degree of non-reponse is common, particularly when
some of the information is sensitive or intrusive.

A standard analysis can give misleading results if the chance of
responding depends on unobserved variables and nothing is done to
adjust for the non-response.
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Example: The Women’s Cardiovascular
Health Study

The WCHS was a stratified population-based case-control study
investigating the relationship between oral contraceptive use and the
incidence of stroke, conducted in 3 counties around Seattle over a 5
year period. (Schwarz et al, 1997.)

Cases - women under 45 with a first stroke, whether fatal or non-fatal.
Tried to recruit all of them.
Controls were randomly sampled from 5 age groups using selection
probabilities ranging from 4 × 10−5 for the 18 − 24 age group to
58× 10−5 for the 40− 45 age group.
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Example: The Women’s Cardiovascular
Health Study

The WCHS was a stratified population-based case-control study
investigating the relationship between oral contraceptive use and the
incidence of stroke, conducted in 3 counties around Seattle over a 5
year period. (Schwarz et al, 1997.)

Cases - women under 45 with a first stroke, whether fatal or non-fatal.
Tried to recruit all of them.
Controls were randomly sampled from 5 age groups using selection
probabilities ranging from 4 × 10−5 for the 18 − 24 age group to
58× 10−5 for the 40− 45 age group.

There was a reasonable amount of non-response (29% among cases
and 25% among the controls). All non-respondents were contacted
by phone to obtain values of a few key variables (in particular
contraceptive use) that were believed to influence response rates.
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Introduction

The data from the WCHS study were analysed using weighted
methods, originally developed for use in survey sampling, to adjust
for non-response. (See Arbogast et al (2002) for details.)

It is well-known that survey weighting leads to very inefficient
estimates when the weights vary widely (e.g. Elliot & Little, 2000,
recommend that wmax/wmin be no more than about 10).

In case-control studies the variation in weights is usually extremely
large - wmax/wmin = 2.5× 105 in the example ⇒ we should be able
to get much better estimates.
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Formal Set-Up

We have a binary response, Y , with Y = 1 denoting a case and
Y = 0 a control, and a vector of potential explanatory variables, x.

We want to fit a logistic regression model,

P{Y = 1 ∣ x} = ex
T�

1 + ex
T�

= p1(x;�) say,

for the conditional probability that someone with covariate values x
is a case.
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Formal Set-Up

We have a cohort of N units with values {(xi,yi), i = 1, . . . , N},
generated from the joint distribution Y and x.

Suppose that we know the value of Y and some components of x,
say x(1), for all members of the cohort.

We first partition the cohort into H strata, S1, . . . , SH, based on the
value of x(1). Let Nℓℎ be the number of units with Y = ℓ in Sℎ.

Then we choose a sample of nℓℎ of these units for further observation.

Let R1i be an indicator variable taking the value 1 if the itℎ unit is
in the chosen sample and 0 otherwise and set �1i = P (R1i = 1).
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Formal Set-Up

Some of the chosen units will respond and some will not.

We collect information on the remaining components of x from all
respondents.

Let R2i = 1 if the itℎ chosen unit responds and R2i = 0 otherwise,
and let �2i = P (R2i = 1).

If we set Ri = R1iR2i, then we have complete information for those
units with Ri = 1. This happens with probability P (Ri = 1) = �1i�2i
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Formal Set-Up

If we had complete data on all members of the original cohort, we
would estimate � from the logistic likelihood equations

SN(�) =

N∑
1

Ui(�) =

N∑
1

xi[yi − p1(xi;�)] = 0.

It is well-known that we can get very misleading results if we just
leave out all the units with incomplete data and work with

ŜN(�) =

N∑
1

RiUi(�).

However, there are ways of fixing this by adjusting the terms in this
complete-case score function.
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Estimating Equations

Consider the class of estimating equations S0(�̂) = 0, with

S0(�) =

N∑
1

RiW(xi,yi;�, �) =

N∑
1

S0i

where S0i = S0i(xi,yi;�) = RiW(xi,yi;�) satisfies the condition
E{S0i ∣ xi} = 0 at the true value of �.
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Estimating Equations

Consider the class of estimating equations S0(�̂) = 0, with

S0(�) =

N∑
1

RiW(xi,yi;�, �) =

N∑
1

S0i

where S0i = S0i(xi,yi;�) = RiW(xi,yi;�) satisfies the condition
E{S0i ∣ xi} = 0 at the true value of �.

Note that this:

− only uses data from completely observed units;

− depends on �, the vector of selection probabilities.
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Important Special Cases

∙ The Horvitz-Thompson estimator.

Here

S0i(xi,yi;�, �) =
Ri

�i
Ui(�)

with �i = P{Ri = 1 ∣ xi,yi} = �1i�2i

This is the standard approach used to counteract selection bias in
survey sampling [e.g.Binder(1983)].

It is not very efficient but has the big advantage that software is
widely available (for linear and logistic models in all major packages,
any GLM in Thomas Lumley’s Survey package in R).
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Important Special Cases

∙ The Horvitz-Thompson estimator.

∙ The Sample Data (or Conditional) Likelihood estimator.

S0i(xi,yi;�, �) = Ri
∂ log f(yi ∣ xi, Ri = 1)

∂�

This approach was developed, more or less independently, in many
fields including econometrics [Hausman & Wise (1981)], biostatistics
[Breslow & Cain (1988)], survey sampling [Pfefferman & Sverchkov
(2003)].

Particularly simple for logistic regression where we simply add a
constant offset log {�(xi,yi = 1)/�(xi,yi = 0)}.

– A.J. Scott – 10



Biometrics 2009

Other Examples

The class includes a number of other methods that have been
suggested in the literature, including

− the “mean score” method of Reilly and Pepe (1995);

− the hybrid estimators of Jiang (2004).
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Results for known �is

Assume for the moment that �i is known for every completely
observed unit (true for the design phase of our example, not for the
non-response).

Then, under mild conditions, �̂, the solution to S0(�̂) = 0, is
consistent and asymptotically normal with asymptotic covariance
matrix of the ‘sandwich’ form

I−1
00 C00I

−1
00 ,

where I00 = E{−∂S0/∂�
T} and C00 = Cov{S0}.
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Unknown �is

What can we do if �i = �(xi,yi) is not known?
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Unknown �is

What can we do if �i = �(xi,yi) is not known?

A standard approach with missing data is to assume that �i can be
modelled by some parametric function, say

�i = �(x̃i,yi;�),

where x̃i contains a subset of the x variables, and that we can get
enough information about the values of x̃i and yi for incompletely
observed units to make the parameter � estimable.
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Unknown �is

Then, given a model �(x̃i,yi;�), we can:

∙ substitute it for �i in the expression for S0;

∙ augment the resulting equations, S0(�̂, �̂) = 0 with another set
of estimating equations for �̂, say S1(�̂) = 0;

∙ apply standard estimating equation methods to the enlarged system
- i.e. set S(�̂, �̂) = 0, where

S(�,�) =

(
S0(�,�)
S1(�)

)
.
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Unknown �is

We have two sources of missing data here, so we have to build models
for:

∙ �1i, say �1i = �1(x
(1)
i ,yi;�1) based on information available for

the whole cohort; and

∙ �2i, say �2i = �2(x
(1)
i ,x

(2)
i ,yi;�2) based on information collected

from a sample of the non-respondents.
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Estimated �is

Then we set S(�̂, �̂1, �̂2) = 0, where

S(�,�1,�2) =

⎛⎝ S0(�,�1,�2)
S1(�1)
S2(�2)

⎞⎠ .

The resulting estimators are consistent & asymptotically normal with
asymptotic covariance matrix I−1C(IT )−1 where C = Cov {S} and

I =

⎛⎝ I00 I01 I02
0 I11 0
0 0 I22

⎞⎠ ,

where I00 = E
{
−∂S1/∂�

T
}

etc
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Estimated �is

Using

I−1 =

⎛⎝ I−1
00 −I−1

00 I01I
−1
11 −I−1

00 I02I
−1
22

0 I−1
11 0

0 0 I−1
22

⎞⎠
then leads to

ACov{�̂} = I−1
00 C00I

−1
00 − I−1

00 I01I
−1
11 C

T
01I

−1
00 − I−1

00 I02I
−1
22 C

T
02I

−1
00 .

∙ The first term is the value of ACov{�̂} with known �is;

∙ the second term measures the effect of estimating �1i;

∙ the third term measures the effect of estimating �2i.
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Estimated �is

We know the values of (R1i, yi,x1i) for every unit in the whole

cohort and we can use all this information to fit �1(x
(1)
i ,yi;�1). If

we do this efficiently, then C01 = I01 and the effect of estimating �1
becomes

I−1
00 I01I

−1
11 I

T
01I

−1
00 .

Since this is positive definite, ACov{�̂} is always smaller with
estimated design probabilities than with known values.

Even when we know the design probabilities exactly, we are still better
off using estimated values !!
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Estimated �is

This is not as strange as it might seem at first glance.

What we are really doing when we estimate the selection probabilities
is bringing in extra information on the values of yi and x1i from the
unsampled units in the cohort (just as with post-stratification and
calibration in survey sampling).

(See Robins, Rotnitzky & Zhao, 1994), for the same sort of effect in
a similar context.)
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Estimated �is

If we can obtain values of the relevant variables from all non-
respondents, then a similar result holds for the effect of estimating
the response probabilities:
If we observe x2i for all non-respondents (as well as the respondents),
and we use an efficient estimator for �2, then C02 = I02 and the
effect of estimating �2 becomes I−1

00 I02I
−1
22 I

T
02I

−1
00 , which is positive

definite.

Again, even in the unlikely event that we knew the response
probabilities, we would be better off estimating them.

The effect is less clear cut when we only have information on a
sample of the non-respondents. Our simulations suggest that we
need a reasonably large sample before estimation becomes beneficial.
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Efficient Estimation

This is a very ad hoc way of using the information in the partially
observed units, and it is reasonable to think that we should be able
to use it more efficiently.

Can we?

The answer is essentially no, provided we fit a sufficiently rich model
for the selection probabilities (although we can squeeze a little bit
more information out of the complete data).
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Efficient Estimation

Suppose that we get information on x2 from all non-respondents and
that x1 and x2 both have finite support.

In this case, we can find an explicit expression for the semi-
parametric efficient estimator (Lee, Scott & Wild 2010). This
turns out to be equal to the conditional likelihood estimator, but with
(�,�1,�2) treated as the parameter rather than just �, augmented
by selection probabilities estimated from saturated models in (y,x1)
and (y,x1,x2) respectively.

This suggests a way of generating good estimators in situations
when fully efficient ones are not available (e.g. when we only have
information on x2 from a sample of non-respondents, or when some
components of x1 or x2 are continuous).
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Simulation results

We carried out a series of simulations to compare the performance of
Horvitz-Thompson, conditional likelihood and fully efficient estimators
based on a simplified version of the fitted model from the WCHS
example using just age, x3, and oral contraceptive use, x2, and age,
x3. (x1 was a categorised version of age.)

The probability of non-response was generated using a logistic model
containing stroke status (y) and contraceptive use, but not age.
We generated estimates using the known response probabilities,
probabilities fitted using the correct model and using a saturated
model containing extra terms for age groups. We also looked at
estimates based on samples of 10% and 50% of the nonrespondents

Efficiencies are calculated relative to the semi-parametric efficient
estimator based on data from all the non-respondents.
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Simulation results

Table 1. Efficiency of Weighted and CML estimators

�2 (OC use) �3(age)

Wtd CML Wtd CML

Known response probs 71.7 73.8 43.4 53.2

Fitted: True model 94.4 97.5 43.5 53.2

Augmented model 97.9 99.8 53.3 68.5

10% NR sample 7.2 51.2 45.5 64.5

50% NR sample 19.2 78.0 49.6 67.3
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