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Introduction

Assume we have two subpopulations, diseased and disease-free
individuals; label the former group 1 and the latter group 2
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Let pi denote the probability of a positive outcome (response)
to the diagnostic test among the members of group i ; we
assume independence within and between both groups
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Let pi denote the probability of a positive outcome (response)
to the diagnostic test among the members of group i ; we
assume independence within and between both groups

In the terminology of diagnostic testing, p1 is the test
sensitivity, and p2 is the probability of a false positive test
error, or 1 minus the test specificity

Since 1975, the ratios

ρ+ = p1/p2

and
ρ− = (1 − p1)/(1 − p2)

have been of particular interest to advocates of evidence-
based medicine
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These functions of sensitivity and specificity have been called
the “likelihood ratio of a positive test result” and the
“likelihood ratio of a negative test result,” as a consequence
of the books by Lusted (1968) and Sackett et al. (1991)
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These functions of sensitivity and specificity have been called
the “likelihood ratio of a positive test result” and the
“likelihood ratio of a negative test result,” as a consequence
of the books by Lusted (1968) and Sackett et al. (1991)

Pr(disease|positive test)

Pr(no disease|positive test)

=
Pr(positive test|disease)

Pr(positive test|no disease)
×

Pr(disease)

Pr(no disease)

= ρ+
Pr(disease)

Pr(no disease)
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Suppose the test result is classified into K > 2 categories,
e.g., for iron-deficiency anemia, Guyatt et al. (1992) report

Serum ferritin concentration (µgm/L)

Group [0, 15) [15, 25) [25, 35) [35, 45) [45, 100) ≥ 100

Diseased 474 117 58 36 76 48
Disease-free 20 29 50 43 398 1320
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By analogy with the case of K = 2 categories the
corresponding table of estimated DLRs for each of the serum
ferritin test result categories would be

Serum ferritin concentration (µgm/L)

Group [0, 15) [15, 25) [25, 35) [35, 45) [45, 100) ≥ 100

Estimated DLR 54.5 9.3 2.7 1.9 0.4 0.1
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If we push the envelope for multiple categories to the limit,
then the corresponding DLR for each category becomes

lim
h→0+

F1(x) −F1(x + h)

F2(x) −F2(x + h)
=

f1(x)

f2(x)
= ρx
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If we push the envelope for multiple categories to the limit,
then the corresponding DLR for each category becomes

lim
h→0+

F1(x) −F1(x + h)

F2(x) −F2(x + h)
=

f1(x)

f2(x)
= ρx

Since each probability density function can be conveniently
expressed in terms of the corresponding hazard function, i.e.,

fi (x) = hi(x) exp
{

−

∫ x

0
hi(s) ds

}

this suggests we might be able to derive an empirical
likelihood-based solution to the problem of estimating ρx
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If we push the envelope for multiple categories to the limit,
then the corresponding DLR for each category becomes

lim
h→0+

F1(x) −F1(x + h)

F2(x) −F2(x + h)
=

f1(x)

f2(x)
= ρx

Since each probability density function can be conveniently
expressed in terms of the corresponding hazard function, i.e.,

fi (x) = hi(x) exp
{

−

∫ x

0
hi(s) ds

}

this suggests we might be able to derive an empirical
likelihood-based solution to the problem of estimating ρx

Formulate the estimation problem using the two-sample
time-to-response framework of Kaplan-Meier (1958)
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An Empirical Likelihood Function for ρx

Denote the ordered, distinct response measurements in the
two samples by

Diseased x11 < x12 < · · · < x1n

Disease-free x21 < x22 < · · · < x2m
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An Empirical Likelihood Function for ρx

Denote the ordered, distinct response measurements in the
two samples by

Diseased x11 < x12 < · · · < x1n

Disease-free x21 < x22 < · · · < x2m

Let hij denote the hazard function in sample i at response
measurement xij , i = 1, 2; j = 1, . . . , n(m).

Define dij and rij , the respective event and the risk sets in
sample i at response measurement xij .

The nonparametric log-likelihood function for h = {hij}, based
on these data, is

ℓ(h) =

n
∑

j=1

{d1j log h1j + (r1j − d1j) log(1 − h1j )}

+

m
∑

k=1

{d2k log h2k + (r2k − d2k) log(1 − h2k)}
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Let t denote a fixed value of the response measurement;
represent the corresponding value of the DLR at x = t by ρt

(but suppress the dependence on t subsequently); then

log ρt = log h1(t) −

∫ t

0
h1(s) ds − log h2(t) +

∫ t

0
h2(s) ds ,
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Let t denote a fixed value of the response measurement;
represent the corresponding value of the DLR at x = t by ρt

(but suppress the dependence on t subsequently); then

log ρt = log h1(t) −

∫ t

0
h1(s) ds − log h2(t) +

∫ t

0
h2(s) ds ,

Due to the discrete nature of the empirical log-likelihood
function, fixing the value of ρt means we want to hold fixed
the quantity

log ρt = log h1t −

(t)
∑

(1 − h1j) − log h2t +

(t)
∑

(1 − h2k)
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Let t denote a fixed value of the response measurement;
represent the corresponding value of the DLR at x = t by ρt

(but suppress the dependence on t subsequently); then

log ρt = log h1(t) −

∫ t

0
h1(s) ds − log h2(t) +

∫ t

0
h2(s) ds ,

Due to the discrete nature of the empirical log-likelihood
function, fixing the value of ρt means we want to hold fixed
the quantity

log ρt = log h1t −

(t)
∑

(1 − h1j) − log h2t +

(t)
∑

(1 − h2k)

Then ℓ(ρt), the profile log-likelihood for ρt , can be obtained
by evaluating the constrained MLEs, h̃ij , that maximize
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ℓξ(ρt) = ℓ + ξ{log h1t −

(t)
∑

log(1 − h1j)

− log h2t +

(t)
∑

log(1 − h2k) − log ρt}

where ξ is a Lagrange multiplier
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ℓξ(ρt) = ℓ + ξ{log h1t −

(t)
∑

log(1 − h1j)

− log h2t +

(t)
∑

log(1 − h2k) − log ρt}

where ξ is a Lagrange multiplier

The score equations for h = {hir} that lead to the constrained
MLEs, h̃ = {h̃ir}, are

∂ℓξ/∂h1j = d1j/h1j − (r1j − d1j − ξ)/(1 − h1j ) = 0 ,

if x1j < t ,

= (d1t + ξ)/h1t − (r1t − d1t)/(1 − h1t) = 0

if x1j = t

= d1j/h1j − (r1j − d1j )/(1 − h1j ) = 0

if x1j > t
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∂ℓξ/∂h2k = d2k/h2k − (r2k − d2k + ξ)/(1 − h2k) = 0

if x2k < t

= (d2t − ξ)/h2t − (r2t − d2t)/(1 − h2t) = 0

if x2k = t

= d2k/h2k − (r2k − d2k)/(1 − h2k) = 0

if x2k > t

i.e.,

h̃1j = d1j/(r1j − ξ) , if x1j < t

= (d1t + ξ)/(r1t + ξ) , if x1t = t

= d1j/r1j , if x1j > t

h̃2k = d2k/(r2k + ξ) , if x2k < t

= (d2k − ξ)/(r2k − ξ) , if x2k = t

= d2k/r2k , if x2k > t
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It follows that the LRS for log ρt , and hence for ρt , is equal to

2{ℓ(ĥ) − ℓ(h̃)}

= 2

[t]
∑

[

d1j log(ĥ1j/h̃1j ) + (r1j − d1j) log
{1 − ĥ1j

1 − h̃1j

}]

+2

[t]
∑

[

d2k log(ĥ2k/h̃2k) + (r2k − d2k) log
{1 − ĥ2k

1 − h̃2k

}]

= 2

(t)
∑

[

r1j log
(

1 −
ξ

r1j

)

− (r1j − d1j) log
{

1 −
ξ

r1j − d1j

}]

+2

(t)
∑

[

r2k log
(

1 +
ξ

r2k

)

− (r2k − d2k) log
{

1 +
ξ

r2k − d2k

}]

+2
[

r1t log
(

1 +
ξ

r1t

)

− d1t log
(

1 +
ξ

d1t

)

+ r2t log
(

1 −
ξ

r2t

)

− d2t log
(

1 −
ξ

d2t

)]

,
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A 100(1 − α)% CI for ρt is found by solving the inequality

−2r(ρt) ≤ c∗1,α
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A 100(1 − α)% CI for ρt is found by solving the inequality

−2r(ρt) ≤ c∗1,α

In practice, solve the equation

−2r(ρt) = c∗1,α

for the two zeros, ξ− < 0 and ξ+ > 0; use these values to
calculate the corresponding lower and upper confidence
bounds for ρt
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Via linear and quadratic expansions of various log functions,
we can show the LRS is approximately equal to

(log ρ̂t − log ρ̃t)
2

Vt

,

where

Vt =

(t)
∑

{

1/(r1j − d1j) − 1/r1j
}

+ (1/d1t − 1/r1t)

+

(t)
∑

{

1/(r2k − d2j) − 1/r2k
}

+ (1/d2t − 1/r2t)
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Via linear and quadratic expansions of various log functions,
we can show the LRS is approximately equal to

(log ρ̂t − log ρ̃t)
2

Vt

,

where

Vt =

(t)
∑

{

1/(r1j − d1j) − 1/r1j
}

+ (1/d1t − 1/r1t)

+

(t)
∑

{

1/(r2k − d2j) − 1/r2k
}

+ (1/d2t − 1/r2t)

This corresponds to the usual form of a Wald statistic, based
on the MLE, used to test a hypothesis concerning log relative
risk, i.e., log ρt
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An Illustrative Example

Wieand et al. (1989) report results of CA 19-9 (cancer
antigen) diagnostic test measurements. A total of 141
measurements were recorded, 51 from disease-free individuals
(with pancreatitis) and 90 from subjects with confirmed
pancreatic cancer.
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An Illustrative Example

Wieand et al. (1989) report results of CA 19-9 (cancer
antigen) diagnostic test measurements. A total of 141
measurements were recorded, 51 from disease-free individuals
(with pancreatitis) and 90 from subjects with confirmed
pancreatic cancer.
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If we fix the value of t at 21.8 U/mL
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If we fix the value of t at 21.8 U/mL
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the resulting profile log-likelihood is
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Concluding Remarks

In the absence of any distributional assumptions, empirical
likelihood provides a convenient basis on which to estimate
the DLR, ρx , for a continuous-scale test measurement
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variance estimate is required, and the resulting point or
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Concluding Remarks

In the absence of any distributional assumptions, empirical
likelihood provides a convenient basis on which to estimate
the DLR, ρx , for a continuous-scale test measurement

Empirical likelihood has the advantage that it is
range-preserving, data-driven, and easy to construct; no
variance estimate is required, and the resulting point or
interval estimate is transformation-invariant

Sensible estimates can only be derived at test measurements
that are duplicated in both samples; additional assumptions,
such as smoothness, should alleviate this drawback
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Good medicine does not consist in the indiscriminate

application of laboratory examinations to a patient, but

rather in having so clear a comprehension of the

probabilities of a case as to know what tests may be of

value . . . it should be the duty of every hospital to see

that no house officer receives his diploma unless he has

demonstrated . . . a knowledge of how to use the results in

the study of his patient.

Dr. George W. Peabody (1922)
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