Estimating the optimal dynamic treatment regime from longitudinal observational data

Liliana Orellana¹, Andrea Rotnitzky^{2,3} and James Robins²

¹Universidad de Buenos Aires, ²Harvard University, ³Universidad Di Tella

IBS AR - NZ - Dec 2009

Motivation

- Highly active antiretroviral therapy (HAART) dramatically decreased morbidity and mortality due to infection with HIV.
- ► Eradication of HIV infection cannot be achieved with available antiretroviral regimens.
- Late initiation of HAART has both risks and benefits:
 - Risks: Irreversible damage of the immune system; AIDS.
 - ▶ Benefits: Avoid drug toxicity and side effects; delay drug resistance.

Motivation

- Highly active antiretroviral therapy (HAART) dramatically decreased morbidity and mortality due to infection with HIV.
- ► Eradication of HIV infection cannot be achieved with available antiretroviral regimens.
- Late initiation of HAART has both risks and benefits:
 - Risks: Irreversible damage of the immune system; AIDS.
 - ▶ Benefits: Avoid drug toxicity and side effects; delay drug resistance.

QUESTION \Longrightarrow When to start HAART?

▶ Decision on "when to start" for asymptomatic HIV+ subjects is essentially based on CD4 cell count.

When to start HAART?

U.S. Treatment Guidelines for HIV-1 Infected Adults and Adolescents (October 2006)

Recommendations on when to start for asymptomatic HIV+ subjects:

- ▶ Definitively start if CD4 count < 200 cells/mm³.
- *Unclear* if CD4 count $> 200 \text{ cells/mm}^3$.
 - ▶ Offer trx if $200 < CD4 \le 350 \text{ cells/mm}^3$.
 - Preferably defer trx if CD4 > 350 cells/mm³.
- ► A treatment strategy based on CD4 counts is an example of a *dynamic treatment regime*.

Dynamic treatment regimes

Data

$$L_0, A_0, L_1, A_1, ..., L_K, A_K, L_{K+1}$$

 $L_k =$ clinical and laboratory variables measured during the k^{th} clinic visit,

 A_k = treatment prescription at visit k

$$\overline{L}_k = (L_0, L_1, ..., L_k)$$
 and $\overline{A}_k = (A_0, A_1, ..., A_k)$

Dynamic treatment regimes

Data

$$L_0, A_0, L_1, A_1, ..., L_K, A_K, L_{K+1}$$

 $L_k =$ clinical and laboratory variables measured during the k^{th} clinic visit,

 A_k = treatment prescription at visit k

 $\overline{L}_k = (L_0, L_1, ..., L_k)$ and $\overline{A}_k = (A_0, A_1, ..., A_k)$

Dynamic treatment regime

- ▶ Sequential rule for determining, at each time k, the next treatment prescription A_k .
- Rule inputs the recorded health information up to time k and returns a treatment recommendation

$$\left(\overline{L}_k,\overline{A}_{k-1}
ight)
ightarrow \; d_k\left(\overline{L}_k,\overline{A}_{k-1}
ight) \in \mathcal{A}_k \; ext{, } k=0,...,K.$$

Dynamic treatment regimes

Data

$$L_0, A_0, L_1, A_1, ..., L_K, A_K, L_{K+1}$$

 $L_k =$ clinical and laboratory variables measured during the k^{th} clinic visit,

 A_k = treatment prescription at visit k

 $\overline{L}_k = (L_0, L_1, ..., L_k)$ and $\overline{A}_k = (A_0, A_1, ..., A_k)$

Dynamic treatment regime

- ▶ Sequential rule for determining, at each time k, the next treatment prescription A_k .
- Rule inputs the recorded health information up to time k and returns a treatment recommendation

$$\left(\overline{L}_k,\overline{A}_{k-1}
ight)
ightarrow \ d_k\left(\overline{L}_k,\overline{A}_{k-1}
ight) \in \mathcal{A}_k$$
 , $k=0,...,K$.

Optimal dynamic regime

Maximizes the expectation of some utility function $Y \equiv u\left(\overline{L}_{K+1}, \overline{A}_K\right)$ among the set of candidate regimes.

Suppose we want to compare two dynamic regimes:

- ▶ start HAART when CD4 falls below 500 (d^{500})
- ▶ start HAART when CD4 falls below 200 (d^{200})

Suppose we want to compare two dynamic regimes:

- ▶ start HAART when CD4 falls below 500 (d^{500})
- ▶ start HAART when CD4 falls below 200 (d^{200})

DESIGN

- ▶ Follow patients periodically, say every 6 months, from HIV diagnosis
- ▶ When CD4 first falls below 500 randomize to
 - start immediately (say, p = 1/2)
 - start when CD4 first seen to fall below 200 (say, p = 1/2)
- ▶ Let Y be the outcome, a utility function of the health and treatment history (higher values are preferable)
- Compare outcome in the two groups after a number of years of follow-up (e.g., 5 years)

Estimation goal

We want to compare the expected utility in:

- 1. a hypothetical world where regime d^{500} was enforced (μ^{500}) versus
- 2. a hypothetical world where regime d^{200} was enforced (μ^{200}) .

Estimation goal

We want to compare the expected utility in:

- 1. a hypothetical world where regime d^{500} was enforced (μ^{500}) versus
- 2. a hypothetical world where regime d^{200} was enforced (μ^{200}) .

We can estimate this contrast from our ideal clinical trial because

- randomization generates exchangeable groups and
- each subject can be assigned to any regime.

Estimation goal

We want to compare the expected utility in:

- 1. a hypothetical world where regime d^{500} was enforced (μ^{500}) versus
- 2. a hypothetical world where regime d^{200} was enforced (μ^{200}) .

We can estimate this contrast from our ideal clinical trial because

- randomization generates exchangeable groups and
- each subject can be assigned to any regime.

It is difficult to conduct such a trial to compare many regimes.

We must then rely on observational data

Interview HIV+ subjects periodically (say, every 6 months)

- record treatment modifications over the last time interval,
- measure biological and clinical markers at interview.

Interview HIV+ subjects periodically (say, every 6 months)

- record treatment modifications over the last time interval,
- measure biological and clinical markers at interview.

Naive analysis

- Define baseline as time when CD4 first falls below 500.
- Regard subject is in:
 - ▶ Group I: if he initiates HAART when first seen to fall below 500.
 - Group II: if he starts HAART when first seen to fall below 200.
- Because treatment was not randomized we compare groups after adjusting for baseline potential confounding factors.

Interview HIV+ subjects periodically (say, every 6 months)

- record treatment modifications over the last time interval,
- measure biological and clinical markers at interview.

Naive analysis

- Define baseline as time when CD4 first falls below 500.
- Regard subject is in:
 - ▶ Group I: if he initiates HAART when first seen to fall below 500.
 - Group II: if he starts HAART when first seen to fall below 200.
- Because treatment was not randomized we compare groups after adjusting for baseline potential confounding factors.

PROBLEM ⇒ SELECTION BIAS

Subjects not included in Group I or II can't be ignored.

Interview HIV+ subjects periodically (say, every 6 months)

- record treatment modifications over the last time interval,
- measure biological and clinical markers at interview.

Naive analysis

- Define baseline as time when CD4 first falls below 500.
- Regard subject is in:
 - ▶ Group I: if he initiates HAART when first seen to fall below 500.
 - ► Group II: if he starts HAART when first seen to fall below 200.
- Because treatment was not randomized we compare groups after adjusting for baseline potential confounding factors.

PROBLEM ⇒ SELECTION BIAS

- Subjects not included in Group I or II can't be ignored.
- Selection bias can be corrected using Inverse Probability of Censoring Weighted (IPCW) methods.

Suppose we want to estimate

$$\mu^{200} = E\left(Y^{200}\right)$$

 $\mu^{200} =$ expected utility in a world where all subjects followed regime d^{200} (start HAART first time CD4 falls below 200).

Suppose we want to estimate

$$\mu^{200} = E\left(Y^{200}\right)$$

 $\mu^{200} =$ expected utility in a world where all subjects followed regime d^{200} (start HAART first time CD4 falls below 200).

Strategy

- Censor a subject at occasion k if he/she:
 - ▶ started HAART at occasion k prior to falling below 200 or
 - failed to start HAART at occasion k when falling below 200.
- Redistribute the censored subject among those still at risk (following regime d²⁰⁰) who have the same history up to k.
- ▶ The process is repeated for k = 0, ..., K.

Subject failed to follow regime d^{200} here.

Censored at occasion k, i.e. $C^{200} = k$

Data recorded in the cohort study

$$L_0, A_0, L_1, A_1, ..., L_K, A_K, L_{K+1}$$

 L_k = vector of covariates measured at time k,

 $A_k = \mathsf{HAART}$ indicator.

Data recorded in the cohort study

$$L_0, A_0, L_1, A_1, ..., L_K, A_K, L_{K+1}$$

 L_k = vector of covariates measured at time k, A_k = HAART indicator.

Accumulated weight through occasion k for a subject is estimated as

$$W_k^{200} = \frac{I(C^{200} > k)}{\prod_{j=1}^k \widehat{\Pr}\left(C^{200} > j | C^{200} > j - 1, \overline{A}_{j-1}, \overline{L}_j\right)}$$

where $C^{200} = \text{time to censoring under regime } d^{200}$.

- Numerator is the indicator of following regime d^{200} through k.
- Denominator estimates the probability a subject had his observed HAART history through k.
- ▶ Usually $\overline{L_j}$ is a high dimensional vector, so a parametrical model is assumed for the censoring probabilities.

We estimate $\mu^{200} \equiv E\left(Y^{200}\right)$ with

$$\widehat{\mu}^{200} = \frac{\sum_{i=1}^{n} W_i^{200} Y_i}{\sum_{i=1}^{n} W_i^{200}}$$

where W^{200} is the accumulated weight at the end of study.

 $\widehat{\mu}^{200}$ is a weighted average of the outcomes of those patients who followed regime d^{200} throughout.

We estimate $\mu^{200} \equiv E(Y^{200})$ with

$$\widehat{\mu}^{200} = \frac{\sum_{i=1}^{n} W_i^{200} Y_i}{\sum_{i=1}^{n} W_i^{200}}$$

where W^{200} is the accumulated weight at the end of study.

 $\widehat{\mu}^{200}$ is a weighted average of the outcomes of those patients who followed regime d^{200} throughout.

The estimator is consistent and asymptotically normal if:

- Model for hazard of censoring is correctly specified.
- ▶ At each time *k* recorded data includes all covariates used by doctors to prescribe HAART.
 - Sequential Randomization or No Unmeasured Confounders Assumption.
 - Non-testable!

Estimating the optimal regime in a candidate set

- We want to compare regimes $d^x \equiv start\ HAART\ first\ time\ CD4$ falls below x, where $x \in \mathcal{X} = \{200, 201, ..., 500\}$.
- In principle, we can estimate each mean $\mu^x \equiv E(Y^x)$ separately and then find \widehat{x}_{opt} that maximizes $\widehat{\mu}^x$.
- ▶ However, estimates $\widehat{\mu}^x$ will have high variance because each regime will be followed by few subjects.
- Even in the ideal randomized trial we would also face this small cell problem.

Estimating the optimal regime in a candidate set

- We want to compare regimes $d^x \equiv start\ HAART\ first\ time\ CD4$ falls below x, where $x \in \mathcal{X} = \{200, 201, ..., 500\}$.
- In principle, we can estimate each mean $\mu^x \equiv E(Y^x)$ separately and then find \widehat{x}_{opt} that maximizes $\widehat{\mu}^x$.
- ▶ However, estimates $\widehat{\mu}^{x}$ will have high variance because each regime will be followed by few subjects.
- Even in the ideal randomized trial we would also face this small cell problem.

 $SOLUTION \Rightarrow parametrically model E(Y^x)$

Assume that

$$\mu^{x} = E(Y^{x}) = h(x; \beta) \tag{1}$$

where $h(x; \beta)$ is a known smooth function of a $p \times 1$ unknown parameter β .

For example,

$$h(x; \beta) = \beta_0 + \beta_1 x + \beta_2 x^2 + \beta_3 x^3 + \beta_4 x^4 + \beta_5 x^5$$

Assume that

$$\mu^{x} = E(Y^{x}) = h(x; \beta) \tag{1}$$

where $h(x; \beta)$ is a known smooth function of a $p \times 1$ unknown parameter β .

For example,

$$h(x; \beta) = \beta_0 + \beta_1 x + \beta_2 x^2 + \beta_3 x^3 + \beta_4 x^4 + \beta_5 x^5$$

Given an estimate $\widehat{\beta}$ of β we can find $\widehat{x}_{opt} = \arg\max\left(h\left(x;\widehat{\beta}\right)\right)$.

So, under model (1) the problem reduces to estimating β .

- Let $\gamma =$ number of regimes in the candidate set $\mathcal{X} = \{200, 201, ..., 500\}$.
- Create an artificial data set, with each subject contributing γ observations $\left(W_i^{x_j}, Y_i, x_j\right)$, $j=1,...,\gamma$.

- ▶ Let $\gamma =$ number of regimes in the candidate set $\mathcal{X} = \{200, 201, ..., 500\}$.
- Create an artificial data set, with each subject contributing γ observations $\left(W_i^{x_j}, Y_i, x_j\right)$, $j=1,...,\gamma$.
- Find $\widehat{\beta}$ solving the weighted estimating equation

$$\mathbb{P}_{n}\left\{\sum_{x\in\mathcal{X}}\frac{\partial h\left(x;\beta\right)}{\partial\beta}W^{x}\left[Y-h\left(x;\beta\right)\right]\right\}=0$$

- ▶ Let $\gamma =$ number of regimes in the candidate set $\mathcal{X} = \{200, 201, ..., 500\}$.
- Create an artificial data set, with each subject contributing γ observations $\left(W_i^{x_j}, Y_i, x_j\right)$, $j=1,...,\gamma$.
- Find $\widehat{\beta}$ solving the weighted estimating equation

$$\mathbb{P}_{n}\left\{\sum_{x\in\mathcal{X}}\frac{\partial h\left(x;\beta\right)}{\partial\beta}W^{x}\left[Y-h\left(x;\beta\right)\right]\right\}=0$$

Model extensions (I)

Estimating equations can be modified to obtain estimators:

- doubly-robust
- ► locally efficient

Model extensions (I)

Estimating equations can be modified to obtain estimators:

- doubly-robust
- ► locally efficient

Can allow for the possibility that optimal CD4 count depends on baseline covariates Z by considering Parametric Marginal Structural Mean (MSM) models of the form

$$E(Y^{x}|Z=z) = h_{par}(z,x;\beta)$$

For instance,

$$h_{\mathsf{par}}\left(z, x; \beta\right) = \beta_{1} + \beta_{2}z + \beta_{3}x + \beta_{4}xz + \beta_{5}x^{2} + \beta_{6}x^{2}z$$

Model extensions (I)

Estimating equations can be modified to obtain estimators:

- doubly-robust
- ► locally efficient

Can allow for the possibility that optimal CD4 count depends on baseline covariates Z by considering Parametric Marginal Structural Mean (MSM) models of the form

$$E(Y^{x}|Z=z) = h_{par}(z, x; \beta)$$

For instance,

$$h_{\mathrm{par}}\left(z,x;\beta\right) = \underbrace{\beta_{1} + \beta_{2}z}_{q(z)} + \underbrace{\beta_{3}x + \beta_{4}xz + \beta_{5}x^{2} + \beta_{6}x^{2}z}_{h_{\mathrm{sem}}\left(z,x;\beta\right)}$$

Can also consider more flexible Semiparametric MSM models

$$E(Y^{x}|Z=z) = h_{\text{sem}}(z, x; \beta) + q(z)$$

Model extensions (II)

The same approach can be used to optimize over a more complex set of candidates regimes where x is replaced by a vector $(x_1, ..., x_s)$.

Example:

- Start HAART the first time that
 - ightharpoonup CD4 falls below x_1 or
 - ▶ CD4 falls in (x_1, x_2) and current HIV RNA is greater than x_3 .
- Otherwise do not start.

The target of estimation in this approach is $(x_{1,opt}, x_{2,opt}, x_{3,opt})$.

General formulation (Summary)

- Assuming that treatment decisions are to be made at fixed times t = 0, 1, ..., K.
- We considered regimes indexed by a vector $x \in \mathcal{X}$, \mathcal{X} possibly uncountable
- We developed estimators of the optimal treatment regime x_{opt} (z) for subjects with baseline values Z = z under:
 - ▶ Parametric Marginal Structural Mean Models for $E(Y^x|Z=z)$.
 - Semiparametric Marginal Structural Mean Models for $E(Y^x|Z=z)$.
- We established a set of assumptions for identification of $E\left(Y^{x} \middle| Z=z\right)$ from the observed data distribution.
- We derived a class of consistent, doubly-robust and asymptotically normal estimators of β under each of the proposed models and the efficient estimator in the class.

Data analysis for illustrative purposes only

We applied this method to the publicly available MACS-WIHS data.

- Restricted to HIV-positive, AIDS-free participants who were antiretroviral therapy naïve by the time HAART was first available for use.
- Outcome of interest was the minimum of
 - time since baseline to death from any cause
 - time to first diagnosis of clinical AIDS
 - 7 years (five years follow-up).

Data analysis for illustrative purposes only

We applied this method to the publicly available MACS-WIHS data.

- Restricted to HIV-positive, AIDS-free participants who were antiretroviral therapy naïve by the time HAART was first available for use.
- Outcome of interest was the minimum of
 - time since baseline to death from any cause
 - time to first diagnosis of clinical AIDS
 - 7 years (five years follow-up).
- ► Set of regimes $x \in [100, 400]$.
- ▶ Proportion of patients following regime d^x steadily decreased from 57% for regime d^{100} to 27% for regime d^{400} .
- ▶ We assumed a Parametric MSM polynomial model in x (5th order) with no baseline covariates.
- ▶ We obtained $\hat{x}_{opt} = 289 \text{ cell counts/mm}^3 \text{ with nominal } 95\% \text{ CI for } x_{opt} = (266; 312).$

Concluding remarks

- Dynamic MSM models have appealing properties
 - Easy to understand.
 - Easy to fit with standard software that allows for weighting.
 - It is possible to deal with missing outcomes (due to death for other causes or drop-out).
- We conducted simulation studies that confirmed the theoretical results.

Concluding remarks

- Dynamic MSM models have appealing properties
 - Easy to understand.
 - Easy to fit with standard software that allows for weighting.
 - It is possible to deal with missing outcomes (due to death for other causes or drop-out).
- We conducted simulation studies that confirmed the theoretical results.
- However... our proposal assumes that patients come to the clinic at fixed time intervals.
- This is not the realistic setting in the management of chronic diseases:
 - next visit date is decided based on patient health status and
 - patients are free to return earlier if they need to do so.

Main ideas of the talk based on:

- Orellana L.C. (2007) Methodological challenges for the estimation of optimal dynamic treatment regimes from observational studies.
 Harvard University, Dep of Biostatistics, Ph.D. Thesis.
- Robins J.M., Orellana, L., Rotnitzky A. (2008) Optimal treatment and testing strategies with possibly nonignorable observation processes. Statistics in Medicine, 27: 4678–4721.
- Orellana L., Rotnitzky A. and Robins J.M. Dynamic regime marginal structural mean models for estimation of optimal dynamic treatment regimes (to appear in *International Journal of Biostatistics*, 2009).