A Reliable Constrained Method for Identity Link Poisson Regression

Ian Marschner

Macquarie University, Sydney

Australasian Region of the International Biometrics Society, Taupo, NZ, Dec 2009.

Identity Link Poisson Model

- Useful for count data where the mean depends additively on a collection of covariates
- Useful as an approximation to identity link binomial model for modelling additive probabilities
- Epidemiological applications:
	- Rate difference regression
	- Risk difference regression
- Alternative to the usual multiplicative models:
	- Multiplicative incidence (log link Poisson)
	- Multiplicative risk (log link binomial)
	- Multiplicative odds (logistic link binomial)

Advantages and Disadvantages

- Modelling advantages:
	- Rate/risk differences may be preferred to rate/risk/odds ratios
	- Additive model may fit the data better than a multiplicative model

Advantages and Disadvantages

- Modelling advantages:
	- Rate/risk differences may be preferred to rate/risk/odds ratios
	- Additive model may fit the data better than a multiplicative model
- Computational disadvantages:
	- Positivity constraints may lead to non-convergence of standard computational methods e.g. IRLS
	- Standard errors and confidence intervals may be invalid if MLE is on or near parameter space boundary
	- Even if standard methods do converge for a single data set, they often won't work for thousands of bootstrap replications

- **Count data**: $\{Y_i; i = 1, \ldots, n\}$ with covariates $\mathbf{x}_i = (x_{i1}, \ldots, x_{iA})$
	- $x_{ij} \in \{1, 2, \ldots, k_j\}$ and $\mathbf{x}_i \in \mathcal{X} = \prod_j \{1, 2, \ldots, k_j\}$

- **Count data**: $\{Y_i; i = 1, \ldots, n\}$ with covariates $\mathbf{x}_i = (x_{i1}, \ldots, x_{iA})$
	- $x_{ij} \in \{1, 2, \ldots, k_j\}$ and $\mathbf{x}_i \in \mathcal{X} = \prod_j \{1, 2, \ldots, k_j\}$
- **Poisson model**: Y_i independent Poisson $(N_i\lambda_i)$ $i=1,\ldots,n$
	- Additive means: $\lambda_i = \Lambda(\mathbf{x}_i; \theta) = \alpha_0 + \sum_{j=1}^A \alpha_j(x_{ij})$
	- \bullet N_i are known positive standardisation constants e.g. expected number of events or number of binomial trials
	- Log-likelihood: $L(\theta) = \sum_{i=1}^{n} Y_i \log[N_i \Lambda(\mathbf{x}_i; \theta)] N_i \Lambda(\mathbf{x}_i; \theta)$

- **Count data**: $\{Y_i; i = 1, \ldots, n\}$ with covariates $\mathbf{x}_i = (x_{i1}, \ldots, x_{iA})$
	- $x_{ij} \in \{1, 2, \ldots, k_j\}$ and $\mathbf{x}_i \in \mathcal{X} = \prod_j \{1, 2, \ldots, k_j\}$
- **Poisson model**: Y_i independent Poisson $(N_i\lambda_i)$ $i=1,\ldots,n$
	- Additive means: $\lambda_i = \Lambda(\mathbf{x}_i; \theta) = \alpha_0 + \sum_{j=1}^A \alpha_j(x_{ij})$
	- \bullet N_i are known positive standardisation constants e.g. expected number of events or number of binomial trials
	- Log-likelihood: $L(\theta) = \sum_{i=1}^{n} Y_i \log[N_i \Lambda(\mathbf{x}_i; \theta)] N_i \Lambda(\mathbf{x}_i; \theta)$
- **Identifiability restriction**: for some $\mathbf{r} = (r_1, \dots, r_A) \in \mathcal{X}$ define $\alpha_i(r_i) = 0$ for each $j = 1, \ldots, A$

- **Count data**: $\{Y_i; i = 1, \ldots, n\}$ with covariates $\mathbf{x}_i = (x_{i1}, \ldots, x_{iA})$
	- $x_{ij} \in \{1, 2, \ldots, k_j\}$ and $\mathbf{x}_i \in \mathcal{X} = \prod_j \{1, 2, \ldots, k_j\}$
- **Poisson model**: Y_i independent Poisson $(N_i\lambda_i)$ $i=1,\ldots,n$
	- Additive means: $\lambda_i = \Lambda(\mathbf{x}_i; \theta) = \alpha_0 + \sum_{j=1}^A \alpha_j(x_{ij})$
	- \bullet N_i are known positive standardisation constants e.g. expected number of events or number of binomial trials
	- Log-likelihood: $L(\theta) = \sum_{i=1}^{n} Y_i \log[N_i \Lambda(\mathbf{x}_i; \theta)] N_i \Lambda(\mathbf{x}_i; \theta)$
- **Identifiability restriction**: for some $\mathbf{r} = (r_1, \dots, r_A) \in \mathcal{X}$ define $\alpha_i(r_i) = 0$ for each $j = 1, \ldots, A$
- Parameter space: $\Theta = \{ \theta : \Lambda(\mathbf{x}; \theta) \geq 0 \text{ for all } \mathbf{x} \in \mathcal{X} \}$
	- Interpretation: overall means $E(Y_i)$ are constrained to be non-negative but the individual $\alpha_i(x_{ij})$ can be negative

Model with Non-negative Coefficients

- Suppose we did constrain the model: $\alpha_i(x_{ij}) \geq 0$ for all i and j
- This type of identity link Poisson model is well known in specialised applications involving Poisson deconvolution
- The EM algorithm provides a computationally stable and convenient method to fit such models
- This is great if you have a specialised application that calls for non-negative coefficients
- In general, identity link Poisson regression models do not have this constraint so the specialised methods are not applicable
- We discuss how to adapt the specialised methods to the general case

Parameter Space Subset

 \bullet Given the chosen identifiability restriction r, define the following subset of the parameter space Θ :

 $\Theta(\mathbf{r}) = {\theta \in \Theta : \Lambda(\mathbf{r};\theta) \leq \Lambda(\mathbf{x};\theta) \text{ for all } \mathbf{x} \in \mathcal{X}}$

- $\Theta(\mathbf{r})$ is the subset of the parameter space in which no covariate pattern has a smaller (standardised) Poisson mean than the covariate pattern r
- $\Theta(\mathbf{r})$ is the subset of the parameter space in which all $\alpha_i(x_{ij}) \geq 0$ for $x_{ij} \neq r_j$
- \bullet Given the chosen identifiability restriction $\mathbf r$, fitting a non-negative coefficient model is the same as fitting the model subject to the constraint $\theta \in \Theta(\mathbf{r})$
- What use is this for the general model with $\theta \in \Theta$?

Fitting the General Model

• For one of the choices of $\mathbf{r} \in \mathcal{X}$ the maximum of $L(\theta)$ over Θ is within $\Theta(\mathbf{r})$ since

$$
\Theta = \bigcup_{\mathbf{r} \in \mathcal{X}} \Theta(\mathbf{r})
$$

- Cycle through the finite number of possible choices of $\mathbf{r} \in \mathcal{X}$ and maximise $L(\theta)$ over $\Theta(\mathbf{r})$ in each case
- This involves a sequence of (stable and convenient) EM algorithm applications to yield a sequence of contrained estimates $\hat{\theta}(\mathbf{r})$
- The MLE $\hat{\theta}$ is then the $\hat{\theta}(\mathbf{r})$ that yields the highest value of L. That is, $\hat{\theta} = \hat{\theta}(\mathbf{r}^*)$ where:

$$
\mathbf{r}^* = \{ \mathbf{r} \in \mathcal{X} : L(\hat{\theta}(\mathbf{r})) \ge L(\hat{\theta}(\mathbf{s})) \text{ for all } \mathbf{s} \in \mathcal{X} \}
$$

• If you find a stationary point then the process can terminate but often the MLE will not be a stationary point

EM Algorithm

• Since the Poisson means are additive, Y_i can be viewed as the sum of unobserved Poisson variates:

$$
Y_i = \sum_{j=0}^{A} Y_i^{(j)} \qquad \text{where} \qquad E(Y_i^{(j)}) = N_i \alpha_j(x_{ij})
$$

- EM algorithm: $\{Y_i\} =$ observed data and $\{Y_i^{(j)}\} =$ complete data
- Only works for the non-negative coefficient model since the complete data means must be non-negative
- \bullet Yields a stable multiplicative algorithm which increases L within $\Theta({\bf r})$ as long as $\hat{\theta}^{(0)}\in\Theta({\bf r})$
- At convergence: $\hat{\theta}^{(\infty)} = \hat{\theta}({\bf r})$, the maximum of $L(\theta)$ over $\Theta({\bf r})$

EM Algorithm

\bullet At iteration c :

$$
\hat{Y}_{i(c+1)}^{(j)} = E(Y_i^{(j)} | Y_i; \hat{\theta}^{(c)}) = \hat{\alpha}_j^{(c)}(l) Y_i / \Lambda(\mathbf{x}_i; \hat{\theta}^{(c)})
$$

$$
\hat{\alpha}_j^{(c+1)}(l) = \sum_{i \in I_{jl}} \hat{Y}_{i(c+1)}^{(l)} / \sum_{i \in I_{jl}} N_i
$$
\n
$$
= \hat{\alpha}_j^{(c)}(l) \left(\sum_{i \in I_{jl}} N_i \right)^{-1} \sum_{i \in I_{jl}} \left(Y_i / \Lambda(\mathbf{x}_i; \hat{\theta}^{(c)}) \right)
$$

where $I_{jl} = \{i : x_{ij} = l\}$ identifies the observations that have covariate j equal to l

Extension to Continuous Covariates

• Isotonic regression:

- Covariate with $C + 1$ distinct observed values $w_0 < \cdots < w_C$
- Additive contribution is $f(w_i)$ for unspecified non-decreasing f
- \bullet Add C dummy covariates to the model corresponing to the C non-negative increments $\gamma_i = f(w_i) - f(w_{i-1})$
- EM algorithm maximises subject to the isotonicity constraint $\gamma_i \geq 0$
- Works for ordinal categorical or continuous covariates

Extension to Continuous Covariates

• Isotonic regression:

- Covariate with $C + 1$ distinct observed values $w_0 < \cdots < w_C$
- Additive contribution is $f(w_i)$ for unspecified non-decreasing f
- \bullet Add C dummy covariates to the model corresponing to the C non-negative increments $\gamma_i = f(w_i) - f(w_{i-1})$
- EM algorithm maximises subject to the isotonicity constraint $\gamma_i \geq 0$
- Works for ordinal categorical or continuous covariates

• Linear regression:

- Shift each covariate by subtracting the minimum (or maximum)
- Use the EM algorithm to maximise subject to a non-negative (or non-positive) gradient
- Cycle through all the combinations and find the highest likelihood

Example 1: Respiratory Cancer Mortality Breslow et al (JASA, 1983)

Epidemiological data on respiratory cancer mortality in 8047 Montana smelter workers

Years Moderate Arsenic	Years Heavy Arsenic									
	$\sqrt{2}$		\lt 1		$1 - 4$		$5+$		Total	
	Obs.	Exp.	Obs.	Exp.	Obs.	Exp.	Obs.	Exp.	Obs.	Exp.
					U.S. Born					
0	28	20.86	$\overline{\mathbf{c}}$	1.21		.56	6	.60	39	23.23
\leq 1		4.91	$\overline{2}$.76		.20		.29	12	6.16
$1 - 4$	8	3.10		.33		.10		.11	15	3.64
$5 - 14$		1.58		.12		.08		.01		1.79
$15+$	4	1.14		.11	0	.05	0	.03	5	1.33
Totals	51	31.59	9	2.53	5	.99	10	1.04	75	36.15 ^a
					Foreign Born					
\circ	33	7.34		.39	0	.11	\overline{c}	.28	36	8.12
< 1	$\overline{\mathbf{c}}$	1.31		.10	$\mathbf{0}$.02		.05	$\overline{2}$	1.48
$1 - 4$.91		.01	0	.07		.04		1.03
$5 - 14$	6	1.05	0	.02	0	.13	0	.04	6	1.24
$15+$	16	1.60	3	.20	$\mathbf 0$.10	0	.01	19	1.91
Total	61	12.21		.72	$\mathbf{0}$.43	$\overline{2}$.42	67	13.78^a

Table 2. Observed and Expected Numbers of Deaths in 40 States Defined by Birthplace and Cumulative Years Working in Heavy and Moderate Arsenic Areas

> glm.fit(Design*Expected,Observed,family=poisson(link="identity")) Error: no valid set of coefficients has been found: please supply starting values In addition: Warning message: In log(ifelse(y == 0, 1, y/mu)) : NaNs produced

Example 1: Respiratory Cancer Mortality

Illustration of calculations for constrained identity link model with 2 covariates:

Example 1: Respiratory Cancer Mortality

Constrained identity link analysis with all covariates and isotonic or unrestricted arsenic exposure effects

Example 1: Respiratory Cancer Mortality

Results of 5000 bootstrap replications of the isotonic identity link model **Foreign born**

Moderate arsenic <1 year

Moderate arsenic 1 − 4 years

Moderate arsenic 15+ years

Heavy arsenic 5+ years

Frequency

Heavy arsenic <1 year

Moderate arsenic 5 − 14 years

Example 2: Crab Population Counts Agresti (1996)

- Outcome: Number of partners for $n = 173$ horseshoe crabs
- Model: Identity link Poisson model for the mean number of partners versus crab size (cm), adjusted for colour and spine condition
- Analysis: IRLS fails to converge; identity link better than log link

Summary

• Reliability:

- Computationally stable method for fitting constrained identity link Poisson models when standard methods fail
- Stationary or non-stationary maximum
- Boundary or interior of parameter space

• Flexibility:

- Categorical, ordinal or continuous covariates
- Unspecified isotonic relationships
- Smoothing step could easily be added for non-parameteric smooth relationships

Validity:

- Computationally reliable bootstrap analysis yields confidence intervals that satisfy parameter constraints
- Even when standard methods converge for the main analysis, they are often too unreliable for a resampling analysis