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Identity Link Poisson Model

Useful for count data where the mean depends additively on a
collection of covariates

Useful as an approximation to identity link binomial model for
modelling additive probabilities

Epidemiological applications:

Rate difference regression
Risk difference regression

Alternative to the usual multiplicative models:

Multiplicative incidence (log link Poisson)
Multiplicative risk (log link binomial)
Multiplicative odds (logistic link binomial)
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Advantages and Disadvantages

Modelling advantages:

Rate/risk differences may be preferred to rate/risk/odds ratios

Additive model may fit the data better than a multiplicative model

Computational disadvantages:

Positivity constraints may lead to non-convergence of standard
computational methods e.g. IRLS

Standard errors and confidence intervals may be invalid if MLE is on
or near parameter space boundary

Even if standard methods do converge for a single data set, they
often won’t work for thousands of bootstrap replications
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Categorical Model

Count data: {Yi; i = 1, . . . , n} with covariates xi = (xi1, . . . , xiA)

xij ∈ {1, 2, . . . , kj} and xi ∈ X =
∏

j{1, 2, . . . , kj}

Poisson model: Yi independent Poisson(Ni�i) i = 1, . . . , n

Additive means: �i = Λ(xi; �) = �0 +
∑A

j=1 �j(xij)

Ni are known positive standardisation constants e.g. expected
number of events or number of binomial trials

Log-likelihood: L(�) =
∑n

i=1 Yi log[NiΛ(xi; �)]−NiΛ(xi; �)

Identifiability restriction: for some r = (r1, . . . , rA) ∈ X define
�j(rj) = 0 for each j = 1, . . . , A

Parameter space: Θ = {� : Λ(x; �) ≥ 0 for all x ∈ X}
Interpretation: overall means E(Yi) are constrained to be
non-negative but the individual �j(xij) can be negative
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Model with Non-negative Coefficients

Suppose we did constrain the model: �j(xij) ≥ 0 for all i and j

This type of identity link Poisson model is well known in specialised
applications involving Poisson deconvolution

The EM algorithm provides a computationally stable and convenient
method to fit such models

This is great if you have a specialised application that calls for
non-negative coefficients

In general, identity link Poisson regression models do not have this
constraint so the specialised methods are not applicable

We discuss how to adapt the specialised methods to the general case
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Parameter Space Subset

Given the chosen identifiability restriction r, define the following
subset of the parameter space Θ:

Θ(r) = {� ∈ Θ : Λ(r; �) ≤ Λ(x; �) for all x ∈ X}

Θ(r) is the subset of the parameter space in which no covariate
pattern has a smaller (standardised) Poisson mean than the
covariate pattern r

Θ(r) is the subset of the parameter space in which all �j(xij) ≥ 0
for xij ∕= rj

Given the chosen identifiability restriction r, fitting a non-negative
coefficient model is the same as fitting the model subject to the
constraint � ∈ Θ(r)

What use is this for the general model with � ∈ Θ?
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Fitting the General Model

For one of the choices of r ∈ X the maximum of L(�) over Θ is
within Θ(r) since

Θ =
∪
r∈X

Θ(r)

Cycle through the finite number of possible choices of r ∈ X and
maximise L(�) over Θ(r) in each case

This involves a sequence of (stable and convenient) EM algorithm

applications to yield a sequence of contrained estimates �̂(r)

The MLE �̂ is then the �̂(r) that yields the highest value of L. That

is, �̂ = �̂(r∗) where:

r∗ = {r ∈ X : L(�̂(r)) ≥ L(�̂(s)) for all s ∈ X}

If you find a stationary point then the process can terminate but
often the MLE will not be a stationary point
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EM Algorithm

Since the Poisson means are additive, Yi can be viewed as the sum
of unobserved Poisson variates:

Yi =

A∑
j=0

Y
(j)
i where E(Y

(j)
i ) = Ni�j(xij)

EM algorithm: {Yi} = observed data and {Y (j)
i } = complete data

Only works for the non-negative coefficient model since the
complete data means must be non-negative

Yields a stable multiplicative algorithm which increases L within
Θ(r) as long as �̂(0) ∈ Θ(r)

At convergence: �̂(∞) = �̂(r), the maximum of L(�) over Θ(r)
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EM Algorithm

At iteration c:

Ŷ
(j)
i(c+1) = E(Y

(j)
i ∣Yi; �̂

(c)) = �̂
(c)
j (l)Yi

/
Λ(xi; �̂

(c))

�̂
(c+1)
j (l) =

∑
i∈Ijl

Ŷ
(l)
i(c+1)

/∑
i∈Ijl

Ni

= �̂
(c)
j (l)

⎛⎝∑
i∈Ijl

Ni

⎞⎠−1 ∑
i∈Ijl

(
Yi

/
Λ(xi; �̂

(c))
)

where Ijl = {i : xij = l} identifies the observations that have
covariate j equal to l
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Extension to Continuous Covariates

Isotonic regression:

Covariate with C + 1 distinct observed values w0 < ⋅ ⋅ ⋅ < wC

Additive contribution is f(wi) for unspecified non-decreasing f

Add C dummy covariates to the model corresponing to the C
non-negative increments i = f(wi)− f(wi−1)

EM algorithm maximises subject to the isotonicity constraint i ≥ 0

Works for ordinal categorical or continuous covariates

Linear regression:

Shift each covariate by subtracting the minimum (or maximum)

Use the EM algorithm to maximise subject to a non-negative (or
non-positive) gradient

Cycle through all the combinations and find the highest likelihood
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Example 1: Respiratory Cancer Mortality Breslow et al (JASA, 1983)

Epidemiological data on respiratory cancer mortality in 8047 Montana
smelter workers

> glm.fit(Design*Expected,Observed,family=poisson(link="identity"))

Error: no valid set of coefficients has been found: please supply starting values

In addition: Warning message: In log(ifelse(y == 0, 1, y/mu)) : NaNs produced
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Example 1: Respiratory Cancer Mortality

Illustration of calculations for constrained identity link model with 2
covariates:

r Constant Birthplace Years heavy arsenic Log-likelihood
Foreign US 0 <1 1–4 5+

(1, 1) 2.56 – 0.00 – 1.44 0.96 4.98 345.02

(1, 2) 2.66 – 0.00 0.00 – 0.86 4.88 343.99

(1, 3) 2.59 – 0.00 0.00 1.41 – 4.95 344.80

(1, 4) 2.72 – 0.00 0.00 1.28 0.80 – 340.63

(2,1) 1.65 3.05 – – 1.77 1.87 5.47 360.61

(2, 2) 1.79 2.99 – 0.00 – 1.73 5.34 358.73

(2, 3) 1.74 2.97 – 0.00 1.69 – 5.40 359.54

(2, 4) 1.87 2.92 – 0.00 1.57 1.65 – 354.35
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Example 1: Respiratory Cancer Mortality

Constrained identity link analysis with all covariates and isotonic or
unrestricted arsenic exposure effects

Unrestricted analysis Isotonic analysis
Covariate Estimate 95% CI Estimate 95% CI

Constant 1.41 0.91 − 1.90 1.37 0.89 − 1.78
Foreign born (vs. U.S.) 2.48 1.26 − 3.70 2.48 1.29 − 3.67
Years moderate arsenic (vs. 0)

<1 year −0.17 −1.18 − 0.85 0.00 0.00 − 1.03
1–4 years 1.60 −0.17 − 3.37 1.35 0.00 − 2.63
5–14 years 0.86 −1.16 − 2.88 1.35 0.31 − 3.50
15+ years 4.03 1.09 − 6.96 4.06 1.59 − 7.18

Years heavy arsenic (vs. 0)
<1 year 1.17 −0.80 − 3.13 1.21 0.00 − 2.96
1–4 years 1.93 −1.47 − 5.32 1.95 0.00 − 5.26
5+ years 5.68 1.11 −10.25 5.70 1.90 −10.59

Identity link deviance 26.05 26.46
Log link deviance 30.36 31.95
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Example 1: Respiratory Cancer Mortality

Results of 5000 bootstrap replications of the isotonic identity link model
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Example 2: Crab Population Counts Agresti (1996)

Outcome: Number of partners for n = 173 horseshoe crabs

Model: Identity link Poisson model for the mean number of partners
versus crab size (cm), adjusted for colour and spine condition

Analysis: IRLS fails to converge; identity link better than log link
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Linear and Isotonic Identity Link Models
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Summary

Reliability:

Computationally stable method for fitting constrained identity link
Poisson models when standard methods fail
Stationary or non-stationary maximum
Boundary or interior of parameter space

Flexibility:

Categorical, ordinal or continuous covariates
Unspecified isotonic relationships
Smoothing step could easily be added for non-parameteric smooth
relationships

Validity:

Computationally reliable bootstrap analysis yields confidence
intervals that satisfy parameter constraints
Even when standard methods converge for the main analysis, they
are often too unreliable for a resampling analysis
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