Capture Recapture estimation using finite mixtures of arbitrary dimension

Richard Arnold Yu Hayakawa Paul Yip

International Biometrics Society Taupo, 30 Nov-3 Dec 2009

Outline

- Capture-Recapture experiments and models
- Reversible Jump MCMC
- Application: Software reliability

Capture-Recapture

- k repeated samples taken from a population
- Population size *N* is unknown
- D distinct individuals are seen
- Some seen on multiple occasions, some only once
- **Goal:** estimate population size *N*

Capture-Recapture: Applications

Size of animal populations:

Samples are occasions on which animals are trapped, marked (for re-identification) and released.

N is the number of animals in the population.

Capture-Recapture: Applications

Size of animal populations:

Samples are occasions on which animals are trapped, marked (for re-identification) and released.

N is the number of animals in the population.

Software testing:

Samples are independent software testers detecting errors. N is the number of errors in the piece of software.

Observations: Capture Matrix X

An unknown number (N - D) of zero rows: to be estimated.

Capture-Recapture

Observations form the $D \times k$ capture matrix

$$X_{ij} = \begin{cases} 1 & \text{if individual } i \text{ appears in sample } j \\ 0 & \text{otherwise} \end{cases}$$

Probability of capture

 p_{ij} = Probability individual *i* is captured in sample *j* = $p(X_{ij} = 1)$

 $X_{ij} \sim \text{Bernoulli}(p_{ij})$

$$p(X|P,N) = \frac{N!}{\prod_{\mathbf{x}} N_{\mathbf{x}}!} \prod_{i=1}^{N} \prod_{j=1}^{k} p_{ij}^{x_{ij}} (1-p_{ij})^{1-x_{ij}}$$

Some key assumptions

- 1. All individuals are catchable
- 2. Closed population: no births/deaths or migration
- 3. No loss of marks (identifiable individuals)
- 4. No impact of sampling on capture probabilities (i.e. no behavioural responses)

(Models do exist for violations of 2-4)

1. Heterogeneity

1. Heterogeneity

Individuals differ – some are more easily caught: model M_h

1. Heterogeneity

- **Individuals differ** some are more easily caught: model M_h
- **Samples differ** some samples are more successful: model M_t

1. Heterogeneity

- Individuals differ some are more easily caught: model $M_{\rm h}$
- Samples differ some samples are more successful: model M_t
 Both sources model M_{th}

1. Heterogeneity

- Individuals differ some are more easily caught: model $M_{\rm h}$
- **Samples differ** some samples are more successful: model M_t
- **Both sources** model $M_{\rm th}$

2. Identifiability

N is identifiable within but not between model classes.
 e.g. finite vs. beta (infinite) mixture models for *P*

1. Individuals – animals/errors differ in their catchability

Individuals belong to A latent classes:

• Membership probabilities $\{\pi_a\}$

• Capture probabilities $\{\phi_a\}$

- 2. Samples probability of capture varies between samples
 - Model $M_{t[f]h}$: k fixed effects

$$p_{ij} = \theta_{aj}$$
$$logit(\theta_{aj}) = logit(\phi_a) + \beta_j + \gamma_{aj}$$

Individual *i* is in latent class *a*

- 2. **Samples** probability of capture varies between samples
 - Model $M_{t[f]h}$: k fixed effects

$$p_{ij} = \theta_{aj}$$
$$logit(\theta_{aj}) = logit(\phi_a) + \beta_j + \gamma_{aj}$$

Individual *i* is in latent class *a*

OR

- 2. **Samples** probability of capture varies between samples
 - Model $M_{t[f]h}$: k fixed effects

$$p_{ij} = \theta_{aj}$$
$$logit(\theta_{aj}) = logit(\phi_a) + \beta_j + \gamma_{aj}$$

Individual *i* is in latent class *a*

OR

• Model $M_{\text{th}} B$ latent classes: membership probabilities $\{\lambda_b\}$ capture probabilities $\{\psi_b\}$

$$p_{ij} = \theta_{ab}$$
$$logit(\theta_{ab}) = logit(\phi_a) + logit(\psi_b) - logit(\phi_1) + \gamma_{ab}$$

Individual i is in latent class a and Sample j is in latent class b

Identifiability

Ordering constraints on mixture component probabilities

 $0 < \phi_1 < ... < \phi_A < 1$ and $\phi_1 = \psi_1 < \psi_2 < ... < \psi_B < 1$ Implemented by 'repulsive' priors (following Green 1995) $\phi | A \sim \text{EOS}(\text{Uniform}(0, 1)^{2A+1})$

 $\{\phi_a\}$ are the even order statistics of (2A + 1) draws from U(0, 1)Sum to zero constraints on fixed effects

$$\sum_{j} \beta_{j} = \sum_{a} \gamma_{aj} = \sum_{j} \gamma_{aj} = 0 \text{ or}$$
$$\sum_{a} \gamma_{ab} = \sum_{b} \gamma_{ab} = 0$$

Ensured by degenerate Normal priors, e.g.

$$\beta_j \sim \text{Normal}(0, \sigma_{\beta}'^2) \text{ with } \sum_j \beta_j = 0$$

Priors

			Mod	lels
Parameter	Distribution	Constants	$M_{t[f]h}$	$M_{\rm th}$
N	Geometric $(1 - \eta)$	$\eta = 0.999$	*	\star
A	Geometric($1 - \rho_h$)	$ ho_h{=}0.8$	\star	\star
B	Geometric($1 - \rho_h$)	$ ho_h{=}0.8$		\star
$\underline{\pi} A$	Dirichlet($\underline{1}\alpha_h$)	$\alpha_h = \frac{3}{2}$	\star	\star
$\phi \left A ight $	$EOS(Uniform(0,1)^{2A+1})$	-	\star	\star
$\overline{\sigma}_{\beta}^2$	InverseGamma($v_{\beta}, \kappa_{\beta}$)	$v_{\beta} = 3, \kappa_{\beta} = 40$	\star	
$\underline{\beta}$	DegenNormal($k; 0, \sigma_{\beta}^2$)		\star	
λB	Dirichlet($\underline{1}\alpha_t$)	$\alpha_t = \frac{3}{2}$		\star
$\psi B,\phi_1$	EOS(Uniform($\phi_1, 1$) ^{2B-1})	2		\star
$\overline{\zeta} A,(B)$	Bernoulli (p_{γ})	$p_{\gamma} = \frac{1}{2}$	\star	\star
$\gamma \zeta,A,(B)$	DegenNormal($A,B;0,\sigma_{\gamma}^2$)	$\sigma_{\gamma} = 5$	\star	\star
$\underline{b} B, \underline{\lambda}$	Discrete($\{1,\ldots,B\};\underline{\lambda}$)			\star

Bayesian Estimation – RJMCMC

Estimation by Reversible Jump MCMC

Draw from posterior

 $p(\{m,\Theta_m\}|X)$

- Reversible Jump MCMC allows dimension switching moves: Addition/deletion of mixture components.
- 4 types of MCMC move in model $M_{\rm h}$.

1		
$ heta_1^{(1)}$		
$\theta_2^{(1)}$		
$\theta_3^{(1)}$		

ep	1	2		
	$ heta_1^{(1)}$	$ heta_1^{(2)}$		
	$\theta_2^{(1)}$	$\theta_2^{(2)}$		
	$\hat{\boldsymbol{\theta}_{3}^{(1)}}$	$\hat{\theta_3^{(2)}}$		

ep	1	2	3	
	$ heta_1^{(1)}$	$ heta_1^{(2)}$	$\theta_1^{(3)}$	
	$oldsymbol{ heta}_2^{(1)}$	$\theta_2^{(2)}$	$\theta_2^{(3)}$	
	$ ilde{ heta_3^{(1)}}$	$ ilde{ heta_3^{(2)}}$	$ ilde{ heta_3^{(3)}}$	

p	1	2	3	4	
	$ heta_1^{(1)}$	$ heta_1^{(2)}$	$ heta_1^{(3)}$	$ heta_1^{(4)}$	
	$\theta_2^{(1)}$	$\theta_2^{(2)}$	$\theta_2^{(3)}$	$\theta_2^{(4)}$	
	$ ilde{ heta_3^{(1)}}$	$ ilde{ heta_3^{(2)}}$	$\hat{\theta_3^{(3)}}$	$ ilde{ heta_3^{(4)}}$	

ep	1	2	3	4	• • •
	$ heta_1^{(1)}$	$ heta_1^{(2)}$	$\theta_1^{(3)}$	$ heta_1^{(4)}$	• • •
	$\theta_2^{(1)}$	$\theta_2^{(2)}$	$\theta_2^{(3)}$	$\theta_2^{(4)}$	• • •
	$ ilde{ heta_3^{(1)}}$	$ ilde{ heta_3^{(2)}}$	$ ilde{ heta_3^{(3)}}$	$ ilde{ heta_3^{(4)}}$	• • •

MCMC Step

1		
$m^{(1)}$		
$\theta^{(1)}$		
$n^{(1)}:1$		
$m^{(1)}:2$		
$\theta_{m^{(1)}:2}^{(1)}$		

MCMC Step

1	2		
$m^{(1)}$	$m^{(2)}$		
$egin{aligned} & m{ heta}_{m^{(1)}:1}^{(1)} \ & m{ heta}_{m^{(1)}:2}^{(1)} \end{aligned}$	$egin{aligned} & heta_{m^{(2)}:1}^{(2)} \ & heta_{m^{(2)}:2}^{(2)} \ & heta_{m^{(2)}:2}^{(2)} \end{aligned}$		
	$\theta_{m^{(2)}:3}^{(2)}$ $\theta_{m^{(2)}:4}^{(2)}$		

MCMC Step

р	1	2	3	4	•••
	$ heta_1^{(1)}$	$ heta_1^{(2)}$	$\theta_1^{(3)}$	$ heta_1^{(4)}$	•••
	$\theta_2^{(1)}$	$\theta_2^{(2)}$	$\theta_2^{(3)}$	$\theta_2^{(4)}$	• • •
	$ heta_3^{(1)}$	$ ilde{ heta_3^{(2)}}$	$ ilde{ heta_3^{(3)}}$	$ ilde{ heta_3^{(4)}}$	•••

1	2	3	
$m^{(1)}$	$m^{(2)}$	$m^{(3)}$	
$egin{aligned} m{ heta}_{m^{(1)}:1}^{(1)} \ m{ heta}_{m^{(1)}:2}^{(1)} \end{aligned}$	$egin{aligned} & m{ heta}_{m^{(2)}:1}^{(2)} \ & m{ heta}_{m^{(2)}:2}^{(2)} \ & m{ heta}_{m^{(2)}:2}^{(2)} \ & m{ heta}_{m^{(2)}:2}^{(2)} \end{aligned}$	$egin{aligned} & heta_{m^{(3)}:1}^{(3)} \ & heta_{m^{(3)}:2}^{(3)} \ & heta_{m^{(3)}:2}^{(3)} \ & heta_{m^{(3)}:2}^{(3)} \end{aligned}$	
	$\theta_{m^{(2)}:4}^{(n)}$	$\theta_{m^{(3)}:4}^{(3)}$	

MCMC Step

p	1	2	3	4	•••
	$ heta_1^{(1)}$	$ heta_1^{(2)}$	$\theta_1^{(3)}$	$ heta_1^{(4)}$	•••
	$\theta_2^{(1)}$	$\theta_2^{(2)}$	$\theta_2^{(3)}$	$\theta_2^{(4)}$	•••
	$ heta_3^{(1)}$	$ ilde{ heta_3^{(2)}}$	$\hat{\theta_3^{(3)}}$	$ heta_3^{(4)}$	•••

1	2	3	4	
$m^{(1)}$	$m^{(2)}$	$m^{(3)}$	$m^{(4)}$	
$egin{aligned} m{ heta}_{m^{(1)}:1} \ m{ heta}_{m^{(1)}:2}^{(1)} \end{aligned}$	$\begin{array}{c c} \theta_{m^{(2)}:1}^{(2)} \\ \theta_{m^{(2)}:2}^{(2)} \\ \theta_{m^{(2)}:2}^{(2)} \\ \theta_{m^{(2)}:3}^{(2)} \\ \theta_{m^{(2)}:4}^{(2)} \end{array}$	$egin{aligned} & heta_{m^{(3)}:1}^{(3)} \ & heta_{m^{(3)}:2}^{(3)} \ & heta_{m^{(3)}:3}^{(3)} \ & heta_{m^{(3)}:3}^{(3)} \ & heta_{m^{(3)}:4}^{(3)} \end{aligned}$	$egin{aligned} & m{ heta}_{m^{(4)}:1}^{(4)} \ & m{ heta}_{m^{(4)}:2}^{(4)} \end{aligned}$	

MCMC Step

p	1	2	3	4	•••
	$ heta_1^{(1)}$	$ heta_1^{(2)}$	$\theta_1^{(3)}$	$ heta_1^{(4)}$	•••
	$\theta_2^{(1)}$	$\theta_2^{(2)}$	$\theta_2^{(3)}$	$\theta_2^{(4)}$	•••
	$ heta_3^{(1)}$	$ ilde{ heta_3^{(2)}}$	$\hat{\theta_3^{(3)}}$	$ heta_3^{(4)}$	•••

1	2	3	4	• • •
$m^{(1)}$	$m^{(2)}$	$m^{(3)}$	$m^{(4)}$	• • •
$ heta_{m^{(1)}:1}^{(1)}$	$ heta_{m^{(2)}:1}^{(2)}$	$ heta_{m^{(3)}:1}^{(3)}$	$ heta_{m^{(4)}:1}^{(4)}$	•••
$\theta_{m^{(1)}:2}^{(1)}$	$\theta_{m^{(2)}:2}^{(2)}$	$\theta_{m^{(3)}:2}^{(3)}$	$\theta_{m^{(4)}:2}^{(4)}$	• • •
	$\theta_{m^{(2)}:3}^{(2)}$	$\theta_{m^{(3)}:3}^{(3)}$		• • •
	$\theta_{m^{(2)}:4}^{(2)}$	$\theta_{m^{(3)}:4}^{(3)}$		• • •

(1) Shift a support point

(2) Exchange probability between points

(3) Split a support point

(4) Merge two support points

Label switching and poor mixing

Estimation of finite mixture models affected if the MCMC sampler **can't mix** because of

- artificial identifiability constraints,
 - (e.g. so that individuals/samples become persistently misallocated) or
 - updating protocols making one mode inaccessible from another.
Label switching and poor mixing

Estimation of finite mixture models affected if the MCMC sampler **can't mix** because of

- artificial identifiability constraints,
 - (e.g. so that individuals/samples become persistently misallocated) or
- updating protocols making one mode inaccessible from another.

In our case:

- Mixture components are labelled by a single parameter: have a natural ordering (e.g. preventing misallocations);
- Dimension-switching RJMCMC allows components to be deleted and reappear – the chain moves rapidly around model space.

Application: AT&T Switch Testing

k = 6 reviewers tested switches and found D = 43 errors (Basu 1998)

Error	Reviewer j							Error	Reviewer j						
i	1	2	3	4	5	6	x_i	i	1	2	3	4	5	6	x_i
1	1	0	0	0	0	0	1	23	0	0	0	0	0	1	1
2	0	0	0	1	0	1	2	24	0	0	0	0	1	0	1
3	0	0	0	0	1	0	1	25	0	0	0	1	1	0	2
4	1	0	0	0	0	0	1	26	1	0	0	0	0	0	1
5	0	0	0	1	0	0	1	27	0	0	0	0	1	0	1
6	0	0	0	1	0	0	1	28	0	0	1	0	0	0	1
7	0	0	0	1	0	0	1	29	1	0	0	0	0	0	1
8	1	0	0	0	0	0	1	30	1	0	0	1	1	0	3
9	1	0	0	0	0	0	1	31	1	0	0	1	0	0	2
10	0	0	0	1	0	0	1	32	1	0	0	0	0	0	1
11	1	0	0	1	0	0	2	33	1	0	0	0	0	0	1
12	1	0	0	0	0	0	1	34	0	0	1	0	0	0	1
13	1	0	0	1	0	0	2	35	0	0	1	0	0	0	1
14	1	0	0	0	0	0	1	36	0	0	0	0	0	1	1
15	1	0	0	1	0	0	2	37	0	0	1	0	0	0	1
16	1	0	0	1	0	0	2	38	1	0	0	0	0	1	2
17	1	1	0	1	1	1	5	39	1	0	0	0	0	0	1
18	1	0	0	0	0	1	2	40	1	0	0	0	0	0	1
19	0	1	0	0	0	0	1	41	0	0	0	0	1	0	1
20	0	1	0	0	0	0	1	42	1	0	0	0	0	0	1
21	1	0	0	1	0	0	2	43	1	0	0	0	0	0	1
22	1	0	0	1	0	0	2	n _j	25	3	4	15	7	6	60

θ

$\log L = -6.37796903283765$

Application: AT&T Switch Testing

 $M_{\rm th}$: 2-way finite mixture

Application: AT&T Switch Testing

 $M_{t[f]h}$: 1-way finite mixture with fixed sample effects

122/132

Posterior Model Probabilities

	$p(A, \zeta X, M_{t[f]h})$		$p(A, B, \zeta X, M_{\text{th}})$											
Α	$\zeta=0$	$\zeta = 1$		$\zeta=0$					$\zeta = 1$					
B =			1	2	3	4	5	6	2	3	4	5	6	
1	58.3			27.5	16.0	9.1	5.3	3.2						
2	29.0	0.4		8.9	5.0	2.8	1.5	0.9	3.4	3.8	2.7	1.6	1.2	
3	9.2			1.3	0.7	0.4	0.2	0.1	0.6	1.1	0.7	0.4	0.2	
4	2.4			0.2	0.1	0.1				0.2	0.1	0.1	0.1	
5	0.6											0.1		
6	0.1												0.1	
7														
8														
9														
10														

Posterior Means

	$E[N X, M_{t[f]h}]$		$\mathrm{E}[N X,M_{\mathrm{th}}]$											
Α	$\zeta = 0$	$\zeta = 1$		$\zeta=0$					$\zeta = 1$					
1	67.8		78.5	65.9	64.7	64.3	64.2	64.2						
2	78.6	81.8	103.6	72.1	70.5	70.1	70.0	70.0	79.4	79.2	76.8	76.9	75.9	
3	79.6	65.2	100.0	71.2	69.8	69.2	68.3	70.4	76.1	81.4	82.9	83.4	80.0	
4	78.1			71.0	70.8	67.7	67.5	68.9	75.6	85.8	77.8	73.6	72.8	
5	75.5			68.4	67.1	69.5	64.7	64.0	67.5	78.8	75.6	67.0	69.7	
6	75.0			70.2	64.9	62.0	67.8	58.0	65.0	91.3	78.2	64.5	66.1	
7	76.4				62.0						74.0	66.3	67.7	
8	84.0													
9	83.0													
10	64.0													

Application: AT&T Switch Testing

Population size estimates \widehat{N} in fixed and variable dimension models.

Model	Mean	Med.	95% CI	Npar
M_0	78.5	76	(63,101)	2
M_{t_2}	65.9	66	(54,97)	10
M_{t_3}	64.7	64	(55,77)	12
$M_{ m t_4}$	64.3	62	(60,64)	14
$M_{t_2+h_2}$	72.1	70	(63,77)	12
$M_{t_2 \times h_2}$	79.4	73	(55,122)	13
$M_{ m th}$	68.7	66	(51,103)	
$M_{t[f]}$	67.8	66	(52,94)	8
$M_{t[f]+h_2}$	78.6	74	(54,129)	10
$M_{t[f] \times h_2}$				15
$M_{t[f]h}$	72.4	69	(52,114)	

Posterior distribution of *N*

Ν
Application: AT&T Switch Testing

- Models M_{th} and $M_{t[f]h}$ both predict of the order 70 errors in total (95% credible intervals [51,103] and [52,114])
- \sim 30 errors not so far detected
- Evidence for heterogeneity among **reviewers**, but not amongst faults
- Bayes Factor $BF(M_{th} : M_{t[f]h}) = 0.42$: neither model class convincingly favoured.

Skills of the 6 reviewers

Application: Snowshoe Hares

Ν

Interval estimates – 3 examples

Interval estimates – 3 examples

Summary

- RJMCMC is a practicable means for model selection/averaging in Capture-Recapture with finite mixtures.
- Doesn't solve non-identifiability between model classes
- Priors regularise the likelihood adding extra components does not affect estimates much.