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Thought experiment

• Suppose we discover a coin landed heads y times.

▶ The coin was flipped a fixed but unknown number of times: N

▶ Cannot assume the coin is fair: probability π

▶ The coin is available for us to use

• Question:

▶ How to estimate N?

• Answer:

▶ Use the coin in a secondary experiment: flip M times and see x heads.

– We’ll set M = y.

▶ Data x provide information to estimate π.
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Thought experiment

• Suppose y = 200

▶ Model: y ∼ binomial(N, π)

• Also have M = y = 200, x = 100

▶ Model: x ∼ binomial(y, π)

• Question: what is your estimate of N?
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Thought experiment

• We now discover the 200 heads arose from P experiments (with the same coin)

• In experiment j the coin flipped Nj times with yj heads

• Interest is in estimating ν =
∑P

j=1Nj

• Suppose the data came from P = 10 experiments

▶ y1 = y2 = . . . = yP = 20

– Model: yj ∼ binomial(Nj , π), j = 1, . . . , P

▶ Recall that M =
∑

j yj = 200, x = 100.

– Model: x ∼ binomial(M,π)

• Question: What is your estimate of ν?
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Look in closer

• Start with the pair of (independent) binomials

y ∼ Bin(N, π), x ∼ Bin(y, π)

• N and π are unknown

▶ Simplified version of capture-recapture

▶ Our thought experiment from the start (with M = y)
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Conditional maximum likelihood estimator

y ∼ Bin(N, π), x ∼ Bin(y, π)

• Suppose that we had x = 100 and y = 200

• Condition on y and use x to estimate π

▶ π̃ = x
y

• Condition on π = π̃ and use y to estimate N

▶ Ñ = y
π̃

• π̃ = 0.5

• Ñ = 400

• Does this agree with our answer from earlier?
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Maximum likelihood estimator

y ∼ Bin(N, π), x ∼ Bin(y, π)

• Suppose that we had x = 100 and y = 200

• MLE for π depends on y

▶ π̂ = x+y

y+N̂

• MLE for N :

▶ N̂ = argmax
N

N !

(N − y)!
π̂x+y(1− π̂)N−x

• π̂ = 0.5017

• N̂ = 398

• Did anyone have N̂ = 398?

▶ The MLE and conditional estimator differ.
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Multiple populations

• Let’s suppose we have P populations

▶ In the thought experiment these were multiple experiments

• Extend our model (common π):

yj ∼ Bin(Nj , π), xj ∼ Bin(yj , π), j = 1, . . . , P

• Interest is in estimation of ν =
∑P

j=1Nj
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Conditional maximum likelihood estimator

yj ∼ Bin(Nj , π), xj ∼ Bin(yj , π), j = 1, . . . , P

• Suppose that we had P = 10, x1 = . . . = xP = 10 and y1 = . . . = yP = 20

• Condition on y1, . . . , yP and use x1, . . . , xP to estimate π

▶ π̃ =
∑

j xj∑
j yj

• Condition on π = π̃ and use y1, . . . , yP to estimate ν =
∑

j Nj

▶ Ñ =
∑

j yj

π̃

• π̃ = 0.5

• ν̃ = 400

• Identical to earlier estimator

▶ Totals
∑

j yj and
∑

j xj are unchanged
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Maximum likelihood estimator

yj ∼ Bin(Nj , π), xj ∼ Bin(yj , π), j = 1, . . . , P

• Suppose that we had P = 10, x1 = . . . = xP = 10 and y1 = . . . = yP = 20

• MLEs:

▶ π̂ = 0.513

▶ ν̂ = 385

• Differs from earlier estimator

▶ P = 1: ν̂ = 398

▶ P = 10: ν̂ = 385

▶ P = 25: ν̂ = 362

Estimating abundance in capture-recapture Slide 10



Model for y

• y ∼ Bin(N, π)

▶ One observation, two unknowns

• Over-specified model!

• It has a unique MLE

▶ N̂ = y, π̂ = 1
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Profile log likelihood of π from data y
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• y ∼ Bin(N, π) is providing weak information about π
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Profile log likelihood of π from data y1, . . . , yP

• Let
∑P

j=1 yj = 1000 and vary number of populations P (we set y1 = . . . = yP )
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• y provides increasing information about π as P increases
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Poisson models

• An alternate model: Poisson rather than binomial

▶ N ∼ Poisson(λ)

▶ Marginalize over N

• The MLE from Poisson model is equivalent to conditional estimator (Cormack)

• Result extends to multiple populations P
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What about Bayes?

• The motivation was inconsistency between MLE and Bayes estimates

▶ MRDS example

• Prior choice is important

▶ We consider scale prior for N : f(N) ∝ N−1 (Link)

• Identical posteriors for binomial and Poisson models

▶ For specific prior choice
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Beyond the pair of binomials

• Results generalize to more realistic mark-recapture models

▶ The term y ∼ Bin(N, π) essentially remains unchanged

▶ More complex model for x

• Simulate and fit closed population model Mt

▶ K = 5 sampling periods

▶ Simulation 1:

– Vary P = 1, 10, 50, 100 and ν = 500, 1000, 2000

▶ Simulation 2: consider κ = N1 = . . . = NP

– Vary P = 10, 50, 100 and κ = 5, 10, 25, 50

• Fixed N1, . . . , NP

▶ The true model is multinomial/binomial
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Simulation 1
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Simulation 2
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Discussion

• This work was motivated by a real example

▶ Estimator sensitivity that was unexpectedly ‘extreme’ for a moderately sized sample

• What I haven’t talked about:

▶ What is known about asymptotic behaviour of these estimators (e.g. Fewster & Jupp)

▶ Use notions of ancillary to help explain results

▶ Frame the problem in terms of nuisance parameters

▶ Connections to REML in mixed effect models

• Summar:

▶ MLE estimation performs poorly (as P increases)

▶ Important to understand estimator behaviour in finite samples
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