Estimating abundance in capture-recapture

The importance of model and estimator choice

Matthew Schofield!, Bill Link2, Richard Barker3, and Heloise Pavanato®

I Department of Mathematics and Statistics, University of Otago
2 USGS Patuxent Wildlife Research Center

3 Division of Science, University of Otago

Estimating abundance in capture-recapture Slide 1



Thought experiment

e Suppose we discover a coin landed heads y times.

» The coin was flipped a fixed but unknown number of times: N
» Cannot assume the coin is fair: probability 7

» The coin is available for us to use
e Question:

» How to estimate N?
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Thought experiment

e Suppose we discover a coin landed heads y times.

» The coin was flipped a fixed but unknown number of times: N
» Cannot assume the coin is fair: probability 7

» The coin is available for us to use
e Question:

» How to estimate N7
e Answer:

» Use the coin in a secondary experiment: flip M times and see x heads.
— We'll set M =y.

» Data x provide information to estimate .
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Thought experiment

e Suppose y = 200
» Model: y ~ binomial(N, )
e Also have M =y = 200, =z = 100

» Model: 2 ~ binomial(y, )

e Question: what is your estimate of N7
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Thought experiment

* We now discover the 200 heads arose from P experiments (with the same coin)

* In experiment j the coin flipped N; times with y; heads

Interest is in estimating v = Zle N;

Suppose the data came from P = 10 experiments
>y =y2=...=yp =20

— Model: y; ~ binomial(N;,7), j=1,...,P
» Recall that M = Zj y; = 200, z = 100.

— Model: = ~ binomial(M, )

Question: What is your estimate of 7
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Look in closer
o Start with the pair of (independent) binomials
y ~ Bin(N, ), x ~ Bin(y, 7)

e N and 7 are unknown

» Simplified version of capture-recapture

» Our thought experiment from the start (with M = y)
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Conditional maximum likelihood estimator

y ~ Bin(N, ), x ~ Bin(y, )

e Suppose that we had = 100 and y = 200

e Condition on y and use x to estimate 7

» 7 =2%
Yy

e Condition on m = 7 and use y to estimate NV

> N:%
e #=0.5
o N =400

Does this agree with our answer from earlier?
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Maximum likelihood estimator

y ~ Bin(N, m), x ~ Bin(y, )

e Suppose that we had = 100 and y = 200

e MLE for w depends on y

z+q
y+N

e MLE for N:
» N = arg]{]naxm
7 =0.5017

N = 398
e Did anyone have N = 398?

» The MLE and conditional estimator differ.

> T =
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Multiple populations

e Let's suppose we have P populations

> In the thought experiment these were multiple experiments

* Extend our model (common 7):

y;j ~ Bin(Nj, ), xj ~ Bin(y;, m), j=1,...

* Interest is in estimation of v = Zle N;
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Conditional maximum likelihood estimator

yj ~ Bin(Nj, ), xj ~ Bin(y;, ), j=1,...,P

e Suppose that we had P=10, 21 =...=zp=10and y; = ... = yp = 20

e Condition on y1,...,yp and use x1,...,xp to estimate 7

2T
Z]‘ Yi

e Condition on m = 7 and use y1,...,yp to estimate v = Zj N;

>

M|

» N = Zi¥
e m=0.5
e v =400
e ldentical to earlier estimator
> Totals >, y; and 3, z; are unchanged
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Maximum likelihood estimator

yj ~ Bin(Nj, ), xj ~ Bin(y;, ), j=1,...,P

e Suppose that we had P=10, 21 =...=zp=10and y; = ... = yp = 20
e MLEs:

» 7 =0.513

» =385
e Differs from earlier estimator

» P=1: =398

» P=10: 7 =385

» P =25 0=2362
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Model for y

e y ~ Bin(N, )
» One observation, two unknowns

e Over-specified model!
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Model for y

e y ~ Bin(N, )

» One observation, two unknowns
e Over-specified model!
e It has a unique MLE

» N=y, 7=1
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Profile log likelihood of 7 from data y
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* y ~ Bin(N, ) is providing weak information about 7
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Profile log likelihood of 7 from data yq,...,yp

e Let Zle y; = 1000 and vary number of populations P (we set y; = ... =yp)
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e gy provides increasing information about 7 as P increases
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Poisson models

¢ An alternate model: Poisson rather than binomial
» N ~ Poisson(\)

» Marginalize over N

e The MLE from Poisson model is equivalent to conditional estimator (Cormack)

* Result extends to multiple populations P
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What about Bayes?

e The motivation was inconsistency between MLE and Bayes estimates
» MRDS example

e Prior choice is important
» We consider scale prior for N: f(N) oc N=! (Link)

e ldentical posteriors for binomial and Poisson models

» For specific prior choice
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Beyond the pair of binomials

e Results generalize to more realistic mark-recapture models
» The term y ~ Bin(N, ) essentially remains unchanged
» More complex model for z

e Simulate and fit closed population model M,

» K = 5 sampling periods
» Simulation 1:

— Vary P =1,10,50,100 and v = 500, 1000, 2000
» Simulation 2: consider k = N; =... = Np
— Vary P =10,50,100 and x = 5,10, 25,50
e Fixed Nl,... ,Np

» The true model is multinomial /binomial
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Simulation 1
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Simulation 2
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Discussion

e This work was motivated by a real example
» Estimator sensitivity that was unexpectedly ‘extreme’ for a moderately sized sample
* What | haven't talked about:

» What is known about asymptotic behaviour of these estimators (e.g. Fewster & Jupp)

» Use notions of ancillary to help explain results

v

Frame the problem in terms of nuisance parameters

» Connections to REML in mixed effect models
e Summar:

» MLE estimation performs poorly (as P increases)

» Important to understand estimator behaviour in finite samples
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