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LINEAR
MODELS

are a MAINSTAY of

data analysis, statistics,
data science, machine learning.
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Linear Model Effects Structures

model (conditional) mean response

LM X3

(linear model)

LMM X8+ Zu, u~ (0,3)

(linear mixed model)

GLM g(Xp3)

(generalized linear model)

GLMM g(XB+ Zu), u~ (0,X)

(generalized linear mixed model)




COMING UP NEXT...

a data set that benefits
from GLMM analysis.



indicator of moderate to severe onycholysis
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Generalized Linear Mixed Models as a Topic

Based on a Web of Science analysis for
t0p|C = “generali*ed ||near m|Xed model*u

year no. papers
1991 3
1993 3

2021 1005




Generalized Linear Mixed Models as a Topic

Based on a Web of Science analysis for
topic = “generali*ed linear mixed model*”

year no. papers
1991 1
1993 3
2021 1005

—> in the last three decades GLMM has gone from
an emerging area

to
almost 3 new papers EVERY DAY.



Maximum Likelhood Estimation
and Asymptotic Variances

TOY EXAMPLE: Xi,..., X, N(log(@o), 1).

6 = maximum likelihood estimator of 6° = exp(X).

Var(8) = (6°)2{exp(2/n) — exp(1/n)}.



Maximum Likelhood Estimation
and Asymptotic Variances

TOY EXAMPLE: Xi,..., X, N(log(BO), 1).

6 = maximum likelihood estimator of 6° = exp(X).

Var(6) = (6°)*{exp(2/n) — exp(1/n)}.

ASYMPTOTIC VARIANCE FOR THIS TOY EXAMPLE:

Asy.Var(9) = (90)2.




Linear Model Asymptotic Variance Example

ind.

}/7,|Xz ~ N(/Bg + /6(1) X, (02)0)7 1 S ( S n,
Xq,..., X, Indep. and identically distributed as X.

IMPORTANT: THE UNIQUE DETERMINISTIC LEADING TERMS BEING SOUGHT!




Linear Model Asymptotic Variance Example
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}/7,|Xz ~ N(/Bg + /6(1) X, (02)0)7 1 S ( S n,
Xq,..., X, Indep. and identically distributed as X.
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(e%)°

ANSWER FOR f;: Asy.Var(B;) = Var()
n

EXAMPLE: X ~ Gamma(7,1), (o2)° =4

— Asy.Var(B:) = 4/7)  pRecISELY
n



Linear Model Asymptotic Variance Example

ind.

Y;|Xz ~ N(/Bg + /6(1) X, (02)0)7 1 S ( S n,
Xq,..., X, Indep. and identically distributed as X.

IMPORTANT: THE UNIQUE DETERMINISTIC LEADING TERMS BEING SOUGHT!

(e%)°

ANSWER FOR f;: Asy.Var(B;) = Var()
n

EXAMPLE: X ~ Gamma(7,1), (02)°=4
_ 4/7
— Asy.Var(B:) = 4/7)  pRrecisELY,
n

(4/7)4+10—100
— :

NOT or

(4/7)—10—100



Generalized Linear Model Example

Y;| X; N Poisson(exp (8By + B Xz-)), 1 <i<n,

Xi1,..., X, ~ Uniform(—1,1).

(8%)? sinh(3?) |
exp(B33){ sinh®(8?) — (8Y)*} n

EXAMPLE: If 8) = 0.34 and 3 = 0.82 then

— Asy.Var(Bl) =

2.1778665681 ...

n

—> Asy.Var(Bl) =



Generalized Linear Mixed Model Example

Yii| Xis, Us & Poisson(exp (B0+U; + B° X,i,,-)), 1<4i<m,

Xij ~ Uniform(—1,1), U; ~ N (0, (%)), 1<j3<n.



Generalized Linear Mixed Model Example

Yt,;j|Xz'j, U, ~ Poisson(exp (,Bg—I—UZ —+ B? X@j)), 1 <1< m,

X;; ~ Uniform(—=1,1), U; ~ N(0,(c%)"), 1<j<n.

THE SITUATION IN JANUARY 2020...

?
Asy.Var(Bo) = —
m
~ ?
AsyVar(B;) = —.

mn



THE SITUATION IN JUNE 2020
(THANKS TO THE SPEAKER AND HIS CO-AUTHORS)

(a%)°

Asy.Var(Eo) =

(,B?)?’ sinh(ﬂ‘l)) |
exp(8) + 3(02)°){ sinh?(8Y) — (89)?} mn

Asy.Var(Bl) =

Example: 8) = —1.46, 8} = 2.11, (%) = 6.66

2.0487282409. ..

mn

~ 6.66 ~
Asy.Var(By) = — Asy.Var(3;) =



Random Intercept and Slopes Extension

Y| X5, Uoir Uni ~ Bernoull (eXpit (58+U0i+(B?+U1i) X1+ Xzij)) )

expit(z) = - j > [ g‘l) ] ~ N(0, ).
~ )0
Asy.Var(3y) = (m”,
Va5 (D |
sy.Var(By) = , (note how simple!)
m
. C,
AsyVar(32) = — (C2 next page).

mn



w0 oo
e/

47) 120|712 exp { — Lo 1] (%) 7 uo ul]T}duodul
(T | 1 X, Xy ] 1171
X, X2 XX
X, XiX X2
B 2 X1Xo 5

cosh (,38 -T— wo + (B + u1) X1 + ,3—(2) X2) +1

33



p { = o w)(2°)[up w)” pduodu,

o=l

E

) 7SI ex
( _

1
X1
X2

X1
X5
X1X5

X2
X1Xo
X3

cosh (,38 -T— wo + (B + u1) X1 + ,3—(2) X2) +1

\

)

e GOOD NEWS: Studentization is possible via method of
moments estimation.

e NOT SO GREAT NEWS: We're stuck with a bivariate integral.

33



The Simpler Random Intercepts-Only Model

ind.

Y| Xij, Uoi, Ur; ~ Bernoulli (eXpit(BS + Uoi + B) X145+ B X2ij)> ;

Ugi ~ N (0, (6)°)

. )0
Asy.Var(B,) = (m”,
~ C
Asy Var(3;) = m—;,
C>

Now C'; and C only require univariate quadrature.



(Potential) Benefits of GLMM Leading Term
Theory

e Confidence intervals

e Optimal design



Excerpt from Diggle et. al
Analysis of Longitudinal Data

Let 2, denote the pth quantile of a standard Gaussian distribution and
d = 5ig — /Ao be the meaningful difference of interest. With n fixed and
known, the number of subjects per group that are needed to achieve type
I error rate a and power P, is

o 2(24 + 2)%0%(1 - p)

i , (2.4.1)

where Q = 1 - P and s2 = 3 (z; — #)*/n, the within-subject variance of
the z;.

To illustrate, consider a hypothetical clinical trial on the effect of a new
treatment in reducing blood pressure. Three visits, including the baseline
visit, are planned at years 0, 2, and 5. Thus, n = 3 and 52 = 4.22. For type I
error rate a = 0.05, power P = 0.8 and smallest meaningful difference
d = 0.5 mmHg/year, the table below gives the number of subjects needed
for both treated and control groups for some selected values of p and o2,

p 100 200

300
0.2 313 625 937
0.5 195 391 586
08 79 157 235
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coverage percenta

Empirical Coverage Results for an Order
(mmn)~! Parameter

— exact likelihood — Theorem 1
200 400 600 800 1000 200 400 600 800 1000
X;~N(0, 1) X;~N(0, 1) X;~N(0, 1) X;~N(0, 1) X;~N(0, 1)
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coverage percentage

Empirical Coverage Results for an Order m 1

xli,- ~ N(IO, 1) |

Parameter
— exact likelihood — Theorem 1
200 400 600 8001000 200 400 600 8001000
| Xli,-~N(|0, 1) | | | Xli,-~N(|0, 1) | | | Xli,-~N(|0, 1) | |
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(82, 82, (09)°) = (2,-.1,.25)

(82, 82 (09)°) = (-3,1.2,.6)

(82, B2, (6°)°) = (1.6,.2,.7)

(82, B2, (62)°) = (.15,-.5,1)

(8, 82 (69 = (-1.3,.1,.8)

o ©O© O
g o O
| | |

i

N

—

—ﬁ“\

T

SN—

Vet

X;; ~ Uniform(-1, 1)

X;; ~ Uniform(-1, 1)

X;; ~ Uniform(-1, 1)

X;; ~ Uniform(-1, 1)

X;; ~ Uniform(-1, 1)

(B2, BS, (69)°) = (:2,-.1,.25)

(.82, (6)°) =(-.3.1.2,.6)

(. 82, (69)°) =(1.6,.2,.7)

(B3, Bo, (6%)°) =(.15,-5,1)

(.1 ()% =(-1.3,1,.8)

O~

7

= — S~— |

Paahadn

—

- 95
- 90
- 85

200 400 600 8001000

200 400 600 8001000

value of m (n is fixed at m/10)

200 400 600 8001000



Some Rates of Convergence Intuition

random intercepts and slopes

m =3 groupsandn=5 ® ®

observations per group

Asy.Var. of slope estimator
is order 1/m




Some Rates of Convergence Intuition

random intercepts and slopes

m =3 groupsandn=5
observations per group

Asy.Var. of slope estimator

is order 1/m

random intercepts only

Asy.Var. of slope estimator
is order 1/(mn)




Our Most General GLMM Leading Term Result

The linear predictoris (8% + U:)T X i + (8e)T Xij-
The random effects vector is U; ~ N (0, ).
The dispersion parameter is ¢"; appears in the log-likelihood via d(¢).

The matrix Cz has a complicated expression (a la Cs a few slides back).

The matrix D;FA has a universal form arising from the vech operator.

Some moment conditions are imposed.

—~ - (0] <0 7
B — B (o] [=° o o o )
0
va(Bs-83)| o |[o] |0¢°® ° °
v'm N LN |0 0 2DF =°®=%D}T O
vech(Z — XVY) 0 A A

—~ 1
| \/H(¢ - ¢0) _ \ _0_ _O o O Zd'((bo)/d)o + dl/(¢0)_ )




Gaussian Variational Approximation Connection

In Hall, Pham, Wand & Wang (Ann. Statist., 2011) we treated Poisson
mixed models with log-likelihood:

m oo n 2
£(3, 0'2) = E log/ exp E (Y;ju — ePotP1 Xij+u) S G + CLOSED FORM
i=1 —o° j=1 202

The 1th of these integrals can be written as

1
1 sumn)? N

oo n .. u? 27T\,
/ exp Z(Y:iju _ Poth ng""“') - V2T . - du
— oo j=1 20 _ 1 —a(u—py)e/ A
‘/27‘-}"1:

= - g 02 (7 — )2
— 2‘71')\,,: Ef] exp Z YLJU'L _ eﬁO‘l‘,@l X'LJ+U'L . 7,2 + ( 1 ll'z)
(2 j—l 20 2)\1;

where E ;. denotes expectation with respect to the random variable
U; ~ N (i, A;). LOOKS LIKE A JOB FOR JENSEN'S INEQUALITY...



Gaussian Variational Approximation Connection
(continued)

Application of Jensen’s inequality leads to

0(8,0%) > £(8,02, 1, A\) WHICH HAS A CLOSED FORM!
(//8\9 &°) = (B, o) component of argmax £(3, o2, p, \).
o 670-27“7A
Back in 2011 we proved that

(a%)o Cy 2{(02)0}2_

Asy.Var(B,) = —, Asy.Var(3,) = — Asy.Var(c?) =

m

WHICH ARE THE SAME ASYMPTOTIC VARIANCES FOR EXACT
MAXIMUM LIKELIHOQOD! AND (ELEVEN YEARS LATER)
GAUSSIAN VARIATIONAL APPROXIMATION IS FULLY EFFICIENT!



References For This Talk So Far
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mixed model analysis and design.
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Bhaskaran, A. and Wand, M.P. (2023).

Dispersion parameter extension of precise generalized
linear mixed model asymptotics.
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Two-Term Asymptotic Variances (oint with Luca Maestrini)

B X Aij I\
B = [ A ] , Xij = [ At ] — <ﬁ+ [ Ui }) X ;; is linear predictor
Bs XBij 0

GAUSSIAN RESPONSE CASE (LMM):

AN

Cov(B|X) =

1
m | O O

mn

>0 0] +¢{1:7<XXT>}‘1{1+op<1)}




Two-Term Asymptotic Variances (oint with Luca Maestrini)

., | = ([ 2]
= , X = — + i X ;:is linear predictor
2 [ Be ] ’ [ X Bij ] 2 0 ’ P

GAUSSIAN RESPONSE CASE (LMM):

AN

Cov(B|X) =

1
m | O O

mn

>0 0] +¢{E(XXT)}_1{1_|_OP(1)}

GENERAL RESPONSE CASE (GLMM):

AN

Cov(B|X) =

> 0 +¢K{1+0P(1)}
O O '

1
m mn

We found the expression for K, but it ain’t pretty.



LATE BREAKING NEWS

Our two-term paper accepted at
BIOMETRIKA

during the week before last!!!



The Clincher

Part of a table from the Biometrika-accepted paper
concerning
sample size calculations for 90% power
with a = 0.05 In a logistic mixed model set-up

for particular values of model parameters and n = 20:

1-term var. 2-term var.
Minimum m;: 54 304
Power estimate: 32.8 88.5

Power conf. int.: (29.9,35.7) (86.5,90.5)



An Additional 2024 Reference For This Talk

Maestrini, L., Bhaskaran, A. and Wand, M.P. (2024).

Second term improvement to generalised linear mixed
model asymptotics.

Biometrika.



CROSSED

RATHER THAN

NESTED

RANDOM EFFECTS




This is CURRENT joint research with Swarnadip Ghosh, Art Owen

(Stanford University, U.S.A.) and Jiming Jiang (University of California,
Davis, U.S.A)).

What Makes Crossed Harder Than Nested?

As per an e-mail message from Art Owen to speaker
(April 2022):

e how recent even a consistency for GLMM
proof was (Jiang, Ann. Statist., 2013),

e the superlinear costs,

e the non-existence of a bootstrap.

MORE ON THE CROSSED VS. NESTED DIFFICULTIES IN NEXT FEW SLIDES...



Crossed Linear Mixed Model Example

ind.
Yiii| Xiirj, Uiy Uj) ~ N(68+Ui+U{,+B‘f Xiitys 02)» 1<i<m,1<id <m

THE SITUATION IN MARCH 2022...

X~ X, U; ~ N(0,(02)°), U,~ N(0,{(c")?}%), 1<j<n.

Asy.Var(3) = ?

Asy.Var(B:) = ?
EVEN IN THE GAUSSIAN RESPONSE CASE!




Linear Mixed Models in Their Most General Form

Cov(B) = (XTV~'X)™" where V = ZGZT+R.



The V matrix for a nested case The V matrix for a crossed case

-




Crossed Linear Mixed Model Example

ind.

Ym/J|Xm/J, Ui, U,:, Y N<,38+U1+U;/+,3? X,,:,,:/j, O'z), 1 S 1 S m, 1 S ’l:/ S m'

ind. ind. ind. .
Xij~ X, U;~N(0,(6%)?), U,~N(0,{(c)?}°), 1<j<n.

THE SITUATION IN MAY 2022...

0.2 (0./)2
,

Asy.Var(Bo) = —

™m

2

Asy.Var(Bl) - mm’n\;ar(X).




A Very General and NEW Crossed Random
Effects Leading Terms “Result”

/
Y, ilUi, Uy Xpgirs Xgigr ~ N

Ui |%. N

ind.

(0, 20), 1

<1< m,

0
(B8R +U: + U,

U;,NN

)T X psir + (BY)T Xgyirs (03)°T)

ind. (O, (Z')O), 1 S 'i,' S m'.

Under some assumptions including m = O(m’) and m’ = O(m):

|

20 E,O
_|_()

m

{(02)003

+ 0 0 +T
2D; (2° ® =)Dy

m/

|

2D (=)’ @ () DT

m

m/’

2((c%)°)?

mm’n

{

—1/2

b ()
—1/2

} (BB — ﬁg)

|

—1/2

}

—1/2
} (6’2 _ (0_2)0)

—1/2

vech(E — £ 2, N(o, I).

vech(&' — (2)9)




THE CROSSED CASE REQUIRES

THAN THE NESTED CASE

AND THIS IS STILL JUST
FOR THE GAUSSIAN
RESPONSE (LMM) CASE!



Closing Summary

e Leading term asymptotics has several practical
benefits including confidence intervals, optimal
design and sample size calculations.

e There is also the attraction of simple-to-digest
summaries of the behaviour of the model parameter
estimators.

e Despite 30 years of GLMM research and widespread
use, leading term asymptotics has been a

MAJOR GAP.
e We show how to BRIDGE THIS MAJOR GAP.



FOR RELEVANT PAPERS
AND MORE CHECK OUL...

matt-wand.utsacademics.info



