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Modernizing Ethiopian Research on Crop Improvement
Prediction into the target population of environments

Genotype
I The aim of plant breeding is to select the

best candidate varieties from small plot
field trials and predict their performance in
farmers’ fields.



Competition in Multi-Environment Trials (METs)
Motivation

I The nature of agriculture in many
developing countries is based on
small-holder farms.

I The area of land available for experimental
trials on agricultural research stations is
often also limited in scale.



Competition in METs
Motivation

I Most farming and field research operations
are conducted manually.

I In a hybrid plant breeding program there
may also be limited seed available.

I Underlying all of these physical constraints
is cost of operations.

I All of these constraints limit testing to
small plots sizes, and maize is often tested
in single row plots.



Competition in individual trials
Statistical considerations

I It is well established that spatial dependence exists between small plots in agricultural field
trials
(Wilkinson et al. 1983; Williams, 1986; Gleeson and Cullis, 1987; Gilmour et al. 1997).

I It is also well documented that there may be interference from adjacent plots in field trials
(Pearce, 1957; Besag and Kempton, 1986; Goldringer, Brabant and Kempton 1994).

I Sometimes field operations are adjusted to minimise these edge effects, and sometimes
they are ignored due to their expected small impact eg in larger plot sizes.

I When plots sizes become small, the interference effects can be important, as is likely the
case in single-row plots.



Competition in individual trials
Literature

Genotypic interference model (Pearce 1957)

I The yield of each plot is influenced by the treatments (typically genotype) tested on that
plot, as well as the treatments tested on the neighbouring plots.

Phenotypic interference model (Besag and Kempton 1986)

I Random treatment interference plus competition from the yield of neighbouring plots (ie
residual errors).

Producer-Competitor model (Goldringer, Brabant and Kempton 1994)

I The treatment effects on plot i are

g(i) + c(i−1) + c(i+1)

where g(i) is the treatment effect on plot i and c(i−1) and c(i+1) are competitor effects
from treatments in neighbouring plots i − 1 and i + 1 on either side.



Competition in individual trials
Recent developments

A model with genotypic and phenotypic interference (Stringer et al. 2011)

I A random treatment interference model (R-TIM)

I A residual correlation model capturing spatial variability and competition at the plot level
I Spatial variability induces positive correlation between neighbouring plots
I Competition typically induces negative correlation between neighbouring plots



Competition in METs
The model extension to METs

We developed a linear mixed model for multi-environment trial data, modelling genotype by
environment interaction (GxE) for direct and neighbour effects (Keno 2023).

I will present
I the linear mixed model formulation for competition across multiple trials
I how we modelled spatial variability and competition at the plot level on a trial basis
I estimation of variance parameters in the model
I some thoughts on the impact of competition on GxE



The MET model for competition
The Linear Mixed Model

The general form of the linear mixed model is

y = Xτ + Zgug + Zouo + e

where
y is the (n × 1) vector of yield response measured on n observations,
τ is a (t × 1) vector of fixed effects with design matrix X(n×t)

ug is a (2mp × 1) vector of direct and neighbour genetic effects for m genotypes in p trials,
with design matrix Zg

(n×2mp)

uo is a (b × 1) vector of random effects with design matrix Zo
(n×b)

e is the (n × 1) vector of residual errors.

The joint distribution of ug, uo and e isug
uo
e

 ∼ N

0
0
0

 ,
Gg 0 0

0 Go 0
0 0 R
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The MET model for competition
Direct and neighbour effects

I Field trial j is comprised of nj plots arranged in a rectangular array across cj columns by rj
rows, and the data is assumed to be ordered as rows within columns within trials,
n =

∑p
j=1 nj

I The random genetic effects are partitioned into terms for direct and neighbour
(competitor) effects

ug = (u′d,u′n)′

Zg = [Zd NgZd]

where Zd is the usual (n × mp) design matrix for m genotypes in p trials, and Ng is an
(n × n) neighbour matrix,

Ng = ⊕p
j=1Ngj , and Ngj = Icj ⊗ Nrj

where Nrj is the first order neighbour incidence matrix indexed in the row direction for
trial j .



The MET model for competition
Direct and neighbour effects

N(rj×rj )
rj =



0 1 0 0 0
1 0 1 0 0
0 1 0 1 0
0 0 1 0 1

. . . . . . . . .
1 0 1
0 1 0



I Then the genetic effects on plot i are from

ud(i) + un(i−1) + un(i+1)

where i is indexed in the row direction, across
the smallest plot dimension.



The MET model for competition
The G structure

The variance of the random genetic effects is

var(ug) = Gg ⊗ Im

Gg =
[

Gd
Gdn Gn

]

Gd =

 σ2
d1...

. . .
σd1dp · · · σ2

dp



Gc =

 σ2
n1
...

. . .
σn1np · · · σ2

np



Gdc =

σd1n1 · · · σdpn1
...

. . .
...

σd1np · · · σdpnp


σ2

dj
and σ2

nj
are the variances of direct and

neighbour genetic effects in trial j , respectively.

σdj dj′ and σnj nj′ are the covariances between
direct effects and neighbour effects in trials j
and j ′, respectively.

σdj nj′ is the covariance between direct and
neighbour effects in trials j and j ′.



The MET model for competition
The R structure

I The variance matrix for the residual errors is var(e) = ⊕p
j=1Rj

Rj = σ2
ej

(Σcj ⊗ Σrj )

I In the competition model Σrj can take the form of a constrained autoregressive process
with two correlation parameters, α1j and α2j (Stringer et al., 2011)

I Note that when α2j = 0 the residual correlation model reverts to the standard spatial
autoregessive model (Gilmour et al. 1997).



Competition in METs
Motivation

I The motivation for this model extension
comes from a MET series conducted in the
Ethiopian mid-altitude maize breeding
program.

I Due to limited land and seed availability,
maize hybrids are grown in single row
plots.

I This practical field arrangement is used for
many maize breeding program trials
conducted in sub-Saharan Africa.



Competition in METs
Field trial example

I A MET series was conducted in six trials over two years testing a total of 478 maize
hybrids.

Trial Columns Rows Replication Genotypes Mean yield (t/ha)

T1 8 44 1.45 242 2.88
T2 8 44 1.35 259 8.69
T3 8 56 1.87 240 8.98
T4 8 58 1.86 250 9.14
T5 8 56 1.87 240 8.12
T6 8 58 1.86 249 7.82



Competition in METs
Field trial example

I Genotype concurrence in this MET series is shown below.

Trial T1 T2 T3 T4 T5 T6

T1 242
T2 242 259
T3 173 180 240
T4 40 40 91 250
T5 173 180 240 91 240
T6 40 40 91 249 91 249



The MET model for competition
ASReml-R code

I The baseline linear mixed model for the competition MET can be fitted in ASReml-R.

asreml(fixed = yield ~ Site ,
random=~ str(Site:Genotype + Site:Gleft + and(Site:Gright) ,

~diag(ns*2):id(Genotype)) +
at(Site):Replicate ,

residual =~ dsum(~ar1(Column):sar2(Row) | Site ) ,
equate.levels = c("Gleft","Gright"), data=maizeMET.df)

I The baseline model is extended to include more complex covariance structures for
Site:(Direct+Neighbour) effects eg factor analytic

I The residual variance model is simplified for competition or spatial covariance alone, based
on the AIC



Competition in METs
Field trial example

I A sequence of standard MET models were fitted, together with the competition MET
model, in ASReml-R (Butler et al. 2019).

Model Variance model Number of Change
Site:Genotype parameters in AIC

1 diag(Site):Genotype 31 283
2 fa(Site,2):Genotype 40 85

3 diag((Site):(Direct+Neighbour)) 37 257
4 fa((Site,3):(Direct+Neighbour)) 64 0



Competition in METs
Field trial example

I Variance parameters were estimated using REML (Patterson and Thompson 1971).

Trial Standard MET Competition MET
σ2

g σ2
e σ2

d σ2
n σ2

e

T1 0.06 1.13 0.03 0.14 0.90
T2 2.17 1.03 2.26 0.13 0.88
T3 1.96 1.54 2.25 0.10 1.20
T4 2.84 1.01 2.74 0.12 0.76
T5 1.17 1.38 1.07 0.10 1.25
T6 1.78 2.10 1.42 0.14 1.93



The MET model for competition
Direct and neighbour effects

Genetic correlations - Direct effects

Range from 0.24 to 0.86

Genetic correlations - Neighbour effects

Range from -0.33 to 0.97



The MET model for competition
Direct and neighbour effects

In Gdn the diagonal values show the negative
correlation between direct and neighbour
effects in the same Trial.

Range from -0.68 to -0.22



Competition in METs
Pure stand performance

I The purpose of breeding trials to estimate
performance of candidate varieties in
farmers’ fields (pure stand) (Goldringer et
al. 1994)

ud + 2un



The MET model for competition
Predictions from standard MET versus competition MET

I Competition changes ranking of
genotypes in breeding trials

I The effect of the inter-plot
competition on genotype
selection is greater under
stressed environments

I When there is a strong negative
correlation between direct and
neighbour effects, then the
variance of the pure stand
performance is reduced, relative
to the standard MET



Competition in METs
Conclusion

I Single-row plots are widely used in maize
breeding programs in sub-Saharan Africa
due to the limitations of land and
resources for breeding trials

I In these trials inter-plot competition biases
grain yield predictions resulting in changes
in genotype rankings and reduced selection
accuracy unless accounted for with
appropriate statistical models



Competition in METs
Implications

I Use of the competition MET model in
breeding programs that currently run
multiple-row plots in early-generation yield
trials could enable a change to single-row
plots and increase the number of test
genotypes that can be evaluated with the
same resources, hence increasing genetic
gain.
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