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Two-phase studies

We have some data (‘phase I’)

We can get new variables or better measures of old variables on a
subsample of the same people.

We want to estimate some regression parameters and try to get
the same answer as if we measured everyone
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Problem

In two-phase studies without non-response we have model-based
and design-based estimators.

▶ Model-based estimators are optimal if the outcome model is
correct

▶ Design-based (‘raking’) estimators are optimal if the outcome
model is modestly misspecified

They sometimes imply very different optimal designs
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Designs sometimes similar

Logistic regression in case–control sampling, both design-based
and model-based

▶ 1:1 case–control ratio is optimal for small β

▶ more controls is optimal for large β

(probably not identical, but qualitatively similar)
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Designs sometimes differ

For linear regression:

▶ model-based estimator optimality: sampling extremes

▶ design-based estimator optimality: sampling everywhere

We know the transition happens over quite small amounts of
model misspecification (Op(n

−1/2)).

What does it look like?
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Example: big difference for MLE at truth

Fitted outcome model:

Y = β0 + β1X + N(0, 1)

A = X + N(0, 1)

True generative model: Y is linear spline in X with knots at ±1.

Sampling model: sampling from 10 strata at deciles of A,
total 10% (and extreme tail sampling for MLE only)

Target of inference: β̂1 estimated in full cohort

Estimators: IPW, parametric MLE based on subsample
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The data: largest misspecification
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Sampling patterns
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Standard error
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Bias
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RMSE
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Summary

▶ Optimal design for model-based estimator becomes less
extreme with even slight misspecification

▶ Optimal design for design-based estimator stays roughly the
same

▶ Extreme-sampling design for model-based estimator is quite
sensitive to model specification
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Example: small difference for MLE at truth

Fitted outcome model:

Y = β0 + β1X + N(0, 1)

A = X + N(0, 1)

True generative model: Y is linear spline in X with knots at ±1,
biased measurement error in A: E [A|X = x ] = (1− γ)x

Sampling model: sampling from 10 strata at deciles of A,
total 10% (and tail sampling and extreme residual sampling for
MLE only)

Target of inference: β̂1 estimated in full cohort

Estimators: Raking/AIPW, parametric MLE based on subsample
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Standard error
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Bias

-0
.1
0

-0
.0
5

0.
00

0.
05

0.
10

Raking

delta

B
ia
s

-10 -5 -3 -1 0 1 3 5 10

   factor(probs)

eql
tri
ext
ex2
tai

-0
.1
0

-0
.0
5

0.
00

0.
05

0.
10

MLE

delta

B
ia
s

-10 -5 -3 -1 0 1 3 5 10

   factor(probs)

eql
tri
ext
ex2
tai



17/20

RMSE
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Summary

▶ As model misspecification increases, designs become more
different for MLE

▶ Optimal design for design-based estimator stays roughly the
same

▶ Efficient design for raking is also more robust for MLE (less
dramatically)
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Conclusions

▶ Design optimality can be quite sensitive to model specification

▶ Designs that are good for the raking estimator seem to be
more robust to model misspecification

▶ That’s how raking and MLE-optimal designs converge under
model misspecification

▶ If you’re going to optimise, it’s worth checking under
misspecification

Conjecture: something like this is true more generally for the worst-case

misspecification direction and the best raking estimator (tricky to prove

for designs with zero sampling probabilities)
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Questions?

Weka, by Giselle Clarkson


