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Two-phase studies

We have some data (‘phase I')

We can get new variables or better measures of old variables on a
subsample of the same people.

We want to estimate some regression parameters and try to get
the same answer as if we measured everyone



Problem

In two-phase studies without non-response we have model-based
and design-based estimators.

» Model-based estimators are optimal if the outcome model is
correct

» Design-based (‘raking’) estimators are optimal if the outcome
model is modestly misspecified

They sometimes imply very different optimal designs



Designs sometimes similar

Logistic regression in case—control sampling, both design-based
and model-based

» 1:1 case—control ratio is optimal for small 3

» more controls is optimal for large

(probably not identical, but qualitatively similar)



Designs sometimes differ

For linear regression:

> model-based estimator optimality: sampling extremes

P design-based estimator optimality: sampling everywhere
We know the transition happens over quite small amounts of
model misspecification (O,(n~/?)).

What does it look like?



Example: big difference for MLE at truth

Fitted outcome model:
Y = Bo —i—BlX + N(O,].)
A= X+ N(0,1)
True generative model: Y is linear spline in X with knots at +1.

Sampling model: sampling from 10 strata at deciles of A,
total 10% (and extreme tail sampling for MLE only)

Target of inference: Bl estimated in full cohort

Estimators: IPW, parametric MLE based on subsample



The data: largest misspecification




Sampling patterns
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Standard error

Raking MLE
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Bias
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RMSE
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Optimal design changes
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Summary

» Optimal design for model-based estimator becomes less
extreme with even slight misspecification

» Optimal design for design-based estimator stays roughly the
same

» Extreme-sampling design for model-based estimator is quite
sensitive to model specification



Example: small difference for MLE at truth

Fitted outcome model:

Y = fBo+ 81X + N(0,1)
A= X+ N(0,1)

True generative model: Y is linear spline in X with knots at +1,
biased measurement error in A: E[A|X = x] = (1 — v)x

Sampling model: sampling from 10 strata at deciles of A,
total 10% (and tail sampling and extreme residual sampling for
MLE only)

Target of inference: BAl estimated in full cohort

Estimators: Raking/AIPW, parametric MLE based on subsample



Standard error
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Bias

Raking MLE
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RMSE
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Summary

» As model misspecification increases, designs become more
different for MLE

» Optimal design for design-based estimator stays roughly the
same

» Efficient design for raking is also more robust for MLE (less
dramatically)



Conclusions

» Design optimality can be quite sensitive to model specification

» Designs that are good for the raking estimator seem to be
more robust to model misspecification

» That's how raking and MLE-optimal designs converge under
model misspecification

> If you're going to optimise, it's worth checking under
misspecification

Conjecture: something like this is true more generally for the worst-case
misspecification direction and the best raking estimator (tricky to prove
for designs with zero sampling probabilities)



Questions?
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