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An Introduction to Plant Breeding Programs

The aim of plant breeding
programs is to release
varieties which are
superior for traits of
interest such as harvest
yield.
The breeding cycle spans
8-10 years between initial
crosses and variety release.
Lines are evaluated for
harvest yield in field trials.
Note the terms; lines,
varieties and genotypes
are used throughout
synonymously.
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An Introduction to Plant Breeding Programs

A breeding program involves
evaluation in multiple stages
i.e. stage 1, stage 2, stage 3
& stage 4, with selection
decisions made between
stages in each year.
Only the top performing lines
are progressed into the next
stage.
S1: 1000 lines → S2: 300
lines
→ S3: 100 lines → S4: 60
lines
There are multiple cycles
occurring, with a new cohort
of lines entering S1 each year.
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Introduction

Selection decisions are based on multi-environment trials (METs), which are
selection experiments conducted across various locations and years. We
define environments as year and location combinations
The design of a selection experiment is dependent on the respective stage.
METs are an important tool in plant breeding to measure genotype by
environment interaction. As genotypes vary in their response to different
environments.
A critical component in the analyses of METs is appropriately accounting for
spatial heterogeneity within an environment.
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Current Frameworks for Modelling Spatial Processes
There is a rich history of literature for the spatial modelling for field trials
such as Papadakis (1937), Bartlett (1978), Zimmerman & Harville (1991),
Cullis & Gleeson (1991) etc.
Gleeson & Cullis (1987) suggested that many of the previously used methods
could be generalised as autoregressive integrated moving average (ARIMA)
processes.
Martin (1990) proposed the use of time series models and methods in the
analysis of field trials.

I Including the use of separable lattice processes in the row and column
directions.

I The examination of autocovariances of residuals as diagnostics for model fit
and checking model assumptions.

I Use of different residuals for diagnostics such as white noise residuals.
Gilmour et al (1997) introduced a widely used framework for modelling
spatial processes in field trials where they partitioned spatial variation into
three components; natural variation, global trend and extraneous variation.
They proposed the use of the sample variogram as a diagnostic tool to
identify global trend and extraneous variation.
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Current Frameworks for Modelling Spatial Processes
Non-stochastic smoothing methods have also been proposed and
implemented in the analysis of field trials. Such as in Rodrigeuz-Alvarez et al
(2018) where tensor product penalised splines (TPS) were used to account
for spatial heterogeneity.
Gogel et al (2023) empirically compared the use of stochastic ARIMA models
with non-stochastic TPS models using the Akaike information criterion (aic).
They found that ARIMA models outperformed the TPS models, they strongly
recommended using ARIMA models in the analysis of field trials. As such
current work is motivated by these important findings!
Since Gilmour et al (1997) little work has been done on diagnostics for
spatial modelling in field trials.
An exception is Verbyla (2019) whom highlighted the need to use aic and
Bayesian information criterion (bic) for formal model selection.
The aim of current work is to revisit ideas of Martin (1990) and more recent
work of Scaccia & Martin (2005) and Lu & Zimmerman (2004) whom
investigated tests of simplifying assumptions of rectangular lattice processes.

I We note these tests were examined for very simple models (e.g. constant
mean and exclusion of random effects).
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Some Notation...

The yield data for a field trial is observed on an n1 × n2 rectangular (regular)
lattice with rows indexed as i = 1, .., n1 and columns (or ranges) indexed by
j = 1, ..., n2. In matrix notation we write

Y =


y1,1 y1,2 . . . y1,n2−1 y1,n2

y2,1 y2,2 . . . y2,n2−1 y2,n2
...

...
. . .

...
...

yn1,1 yn1,2 . . . yn1,n2−1 yn1,n2


so that vec(Y ) = y is an n-vector with (with n = n1 × n2) of the form

y =


y1,1
y2,1
...

yn1−1,n2

yn1,n2

 .

November 30, 2023 7 / 29



Models Used in Current Frameworks
Models used for the analysis of a single field trial are often of the form

y = Xτ + Zg ug + Zbub + Zpup + e,

with τ as the vector of fixed effects, ug as the vector of genetic effects, ub as the
vector of blocking effects, up as the vector of peripheral effects with respective
design matrices. Formally we regard the errors to be a realisation of a regular
(rectangular) lattice process, so that the indexing set L is such that L ⊂ N2. With

E =


e1,1 e1,2 . . . e1,n2−1 e1,n2

e2,1 e2,2 . . . e2,n2−1 e2,n2
...

...
. . .

...
...

en1,1 en1,2 . . . en1,n2−1 en1,n2

 ,
so that

vec(E) = e =


e1,1
e2,1
...

en1−1,n2

 .
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Specification of Random Effects and Errors

The joint distribution of [ ug
> ub

> up
> e> ]> is

ug
ub
up
e

 ∼ N




0
0
0
0

 ,


Gg (σg ) 0 0 0
0 Gb(σb) 0 0
0 0 Gp(σp) 0
0 0 0 R(φ)


 .

The genetic variance matrix Gg (σg ) is often partitioned into additive and
non-additive genetic variance matrices using pedigree or genomic information.
The variance matrices for blocking and peripheral effects Gb(σb) and
Gp(σp) are usually specified as direct sums of scaled identity matrices.
The form of the residual error variance matrix R(φ) is specified by the
covariance function C(., .).

The predicted errors are ẽ = y − {X τ̂ + Zg ũg + Zbũb + Zp ũp} where X τ̂ is the
vector of fitted fixed effects which is unique and ũg , ũb , ũp are the empirical best
linear unbiased estimates of the respective random effects.

November 30, 2023 9 / 29



Current Frameworks for spatial modelling

The specification of model fixed effects Xτ , peripheral effects Zpup and the errors
e is determined after fitting a preliminary baseline model. In the baseline model:

The fixed effects comprise of simply the overall mean.
The genetic effects are partitioned into additive and non-additive.
The blocking effects stay true to the design.
The vector of errors e is often specified with a separable AR1×AR1 variance
structure to model natural variation.
Usually no peripheral effects are specified.

Visual diagnostics of the predicted errors from the baseline model such as the
sample variogram and residual plots are used to diagnose extraneous variation and
global trend. For formal model selection procedures various tests may be
implemented such as likelihood ratio tests for nested models, wald tests for fixed
effects and comparison of aic for (non-nested) models with different fixed effects.
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The Sample Variogram in the Current Framework

The ordinates of the sample variogram V̂ (g1, g2) for the residuals are
essentially calculated using the average of half the squared difference between
pairs of predicted errors at different pairs of lags g1 and g2 in the row and
column directions. Note there are some adjustments for the sampling
distribution of ẽ.
The sample variogram has a complex asymptotic sampling theory since the
ordinates are correlated (Scaccia & Martin, 2005).
The theoretical variogram for an AR1xAR1 process has a smooth appearance
and increases exponentially in the row and column lag directions to the
variance of the process (Stringer et al 2012). Departures from a smooth
appearance may indicate the presence of extraneous variation. For example
from experimental procedures like serpentine harvesting saw tooth like
patterns may be seen across a direction of lags in the sample variogram.
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The Sample Variogram: Some Examples

No obvious trend?? Indicative of Range
Effects Indicative of Row Effects

The drawbacks
Although the sample variogram has some useful properties in terms of
identifying the presence of extraneous variation it is purely visual and does
not admit a formal assessment of validity of the assumptions of the current
variance model, that is second order stationarity, axial symmetry and
separability.
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Formal Diagnostics for Modelling Spatial Processes
Spatial modelling for field trials can be difficult and interpretation of informal
diagnostics can lead to large disparities in the final models fitted by different
practitioners.
Currently there is a gap in the literature with no formal tests to check model
assumptions. Including (i) stationarity, (ii) axial symmetry and (iii)
separability.
The remainder of this talk presents our approach to developing a more formal
approach which examines some of these issues in detail.
To address this we are investigating formal diagnostics to provide a more
vigorous frame work for spatial modelling. We also want to improve the
efficiency of such procedures in pipelines for the analyses of METs.
In addition we are investigating goodness of fit statistics.

I In time series analysis there are white noise tests based on the periodogram
which are of interest (Diggle, 1990).

I There are some complexities we are overcoming!
Scaccia & Martin (2005) and Lu & Zimmerman (2005) previously
investigated various tests for properties such as axial symmetry and
separability.
Many of these tests have not been examined with complex models such as
with genetic effects etc and have only been assessed for small square lattices.
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The Covariance Function

We assume a second order (weakly) stationary error (lattice) process in two
dimensions so that the covariance function is dependent only on the row and
column spatial lags denoted g1 and g2. For j = 1, 2

gj ∈ {−nj + 1, ...,−1, 0, 1, ..., nj − 1}.

Therefore C(., .) at lags g1 and g2 is

C(g1, g2) = cov (Eu,v ,Eu+g1,v+g2 ) , (1)

the covariance function is even so that C(g1, g2) = C(−g1,−g2). The respective
correlation function at lags g1 and g2 is ρ(g1, g2) = C(g1,g2)

C(0,0) and the associated
theoretical semi-variogram is

γ(g1, g2) = 1
2var (E (u, v)− Eu+g1,v+g2 ) = C(0, 0)− C(g1, g2) (2)

= C(0, 0)[1− ρ(g1, g2)]. (3)
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The Spectrum of a Stationary Lattice Process

The spectrum also known as the spectral density function for a second order
stationary lattice process at frequencies ω1 and ω2 is the fourier transform of the
covariance function

f (ω1, ω2) = 1
(2π)2

∞∑
g1=−∞

∞∑
g2=−∞

C(g1, g2)cos(ω1g1 + ω2g2).

Given the spectral density the covariance function may be obtained as

C(g1, g2) =
∫ π

−π

∫ π

−π
f (ω1, ω2)cos(ω1g1 + ω2g2)dω1dω2,

(Priestley, 1981; Ripley, 1981).
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Axial Symmetry Property

A second order stationary process is axial (or reflection) symmetric if the following
equivalent conditions are satisfied:

1 C(g1, g2) = C(−g1, g2) or ρ(g1, g2) = ρ(−g1, g2) or γ(g1, g2) = γ(−g1, g2)
∀g1 and g2.

2 f (ω1, ω2) = f (−ω1, ω2) ∀ω1 and ω2.
That is the correlation function, the covariance function, the variogram and the
spectrum are symmetric about the axes (Scaccia & Martin, 2005). Axial
symmetry is an important, useful property of spatial processes, but this property is
rarely tested in the application of spatial analyses to experiments.
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Separability Property

A second order stationary two dimensional process is separable if the following
equivalent conditions are satisfied:

1 C(g1, g2) = C(g1, 0)C(0, g2) or ρ(g1, g2) = ρ(g1, 0)ρ(0, g2) ∀g1 and g2.
2 f (ω1, ω2) = f (ω1, 0)f (0, ω2) ∀ω1 and ω2.

That is the covariance structure, correlation and spectral density are determined
by the margins. Often processes are assumed to be separable without any formal
tests. An important note is that separability implies axial symmetry.

The advantage of specifying a two dimensional separable process is that the error
variance can be expressed as the Kronecker product of two component matrices
such as R = Σ2 ⊗Σ1. Consequently the inverse is very simple to calculate
particularly for the AR1xAR1 process, where an exact form can be specified.
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Defining the Periodogram

The periodogram is the sample version of the spectrum, the periodogram ordinate
for ω1 and ω2 is the fourier transform of the estimated auto-covariances

I(ω1, ω2) = 1
(2π)2

n1−1∑
g1=−n1+1

n2−1∑
g2=−n2+1

Ĉ(g1, g2)[cos (ω1g + ω2g2)],

(Priestley, 1981; Ripley, 1981). Where Ĉ(g1, g2) is a sample estimator of the
autocovariance function

Ĉ(g1, g2) = 1
n
∑

s(g1,g2)

ẽ(u, v)ẽ(u′, v ′).
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Asymptotic Properties of the Periodogram

For the fourier frequencies ω1j and ω2k of the form

ω1j = 2πj
n1

and ω2k = 2πk
n2

,

where j and k are integers. The asymptotic distribution of the spectrum (Ripley,
1981) is

I(ω1j , ω2k )
f (ω1j , ω2k ) → i.i.d Exp(1)

E
(
I(ω1j , ω2k )

)
→ f (ω1j , ω2k )

var
(
I(ω1j , ω2k )

)
→ f 2(ω1j , ω2k ),

with ω1j 6= 0, π and ω2k 6= 0, π and as n1 and n2 →∞.
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Convenient Properties of the Periodogram
Unlike the sample variogram or sample autocovariances, the periodogram has
attractive asymptotic sampling theory since the ordinates for the fourier
frequencies are independent. They are also easy to compute!
Intuitively the periodogram ordinates may be written as sums of squares with

I(ω1j , ω2k ) ∝ ẽ>Pjk ẽ,
with Pjk being the projection matrix for frequencies ω1j and ω2k .
It follows that there exists an orthogonal partitioning of the total sums of
squares with

ẽ>ẽ = ẽ>
∑

(ω1j ,ω2k )∈O

P jk ẽ,

where O is a set of fourier frequencies corresponding to unique periodogram
ordinates. Also,

ẽ>ẽ = (2π)2

I(0, 0) + I(π, 0)︸ ︷︷ ︸
df =1

+
∑

(ω1j ,ω2k )∈O−Ω

2 I(ω1j , ω2k )︸ ︷︷ ︸
df =2

+ I(0, π) + I(π, π)︸ ︷︷ ︸
df =1

 ,
with Ω = {(0, 0), (0, π), (π, 0), (π, π)}. We can see that each of the
periodogram ordinates for (ω1j , ω2k ) ∈ O are asymptotically independent.
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Testing for Axial Symmetry

Based on these asymptotics Scaccia & Martin (2005) give various statistics to test
axial symmetry such as T1 based on

D(ω1j , ω2k ) = log(I(ω1j , ω2k ))− log(I(ω1j ,−ω2k )).

Under the H0 of axial symmetry the distribution of D(ω1j , ω2k ) is logistic with
mean of zero and variance π2/3. Given the number of appropriate pairs np is large
enough for the central limit theorem to hold T1 = D̄√np√

π2/3
→ N (0, 1). Another

test statistic T3 is based on

G(ω1j , ω2k ) =
I(ω1j , ω2k )− I(ω1j ,−ω2k )
I(ω1j , ω2k ) + I(ω1j ,−ω2k ) ,

so that similarly under the H0 of axial symmetry and given np is large enough
T3 = Ḡ

√
3np → N (0, 1)
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Testing for Separability
If the H0 of axial symmetry is retained, then we regard I(ω1j , ω2k ) and
I(ω1j ,−ω2k ) to be sample realisations of the same spectral value f (ω1j , ω2k ).
(Note if H0 of axial symmetry is rejected, then we would also consider the process
to be non-separable.)

Under the H0 of separability the

E (log(I(ω1j , ω2k ))))→ c1 + log(f (ω1j , 0))) + log(f (0, ω2k ))

and the var
(
log(I(ω1j , ω2k )))

)
→ c2 with c1 and c2 being constant values. Then

given axial symmetry testing for separability may be conducted simply using
analysis of variance (Scaccia & Martin, 2005).

Source SS MS F Ratio
Mean I>P0I I>P0I
ω1j I>Pω1j

I MS(ω1j ) MS(ω1j )/MS(residual)
ω2j I>Pω2j

I MS(ω2j ) MS(ω2j )/MS(residual)
ω1j ∧ ω2j I>Pω1j∧ω2j

I MS(ω1j ∧ ω2j ) MS(ω1j ∧ ω2j )/MS(residual)
residual I>P⊥Vt

I MS(residual)

with I being the relevant vector of ordinates.
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Goodness of fit statistics using the Periodogram

Currently we are looking at various tests to be used as goodness of fit statistics
such as white noise tests. We plan to use these tests after examining axial
symmetry, separability and second order stationarity.

For a white noise process e.g. z ∼ N (0, σ2I) the ”theoretical” periodogram
(spectral density) is a constant function and so the realised periodogram
ordinates should only differ because of sampling fluctuations (Diggle, 1990).

The Cumulative Periodogram in 1D
Essentially the cumulative periodogram is calculated by cumulative summing
up the periodogram ordinates such as cumsum() in R and dividing by the last
cumulative ordinate value.
For a white noise process the cumulative periodogram should increase
approximately linearly. Therefore a test of white noise can be conducted by a
statistic which measures departure from linearity (Diggle, 1990).
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The Cumulative Periodogram for Simulated One
Dimensional Processes n = 48.
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Current Work

We are investigating formal diagnostics to provide a more vigorous frame
work for spatial modelling in field trials.

I By investigating statistics for testing assumptions of
1 Axial Symmetry.
2 Separability.

I In this talk we assume second order stationarity, but are looking into
diagnostic tests for this.

I Also assessing statistics for testing goodness of fit.
The periodogram offers some tests which are simple to implement.
Although there are some complexities as the sampling distribution of the
predicted errors does not have a simple form.
We are conducting some simulation studies to assess the tests which have
been promising. But are not ready to be published.
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Questions?
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