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Multivariate abundance data
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Multivariate abundance data

e Data characterized by:
o Multiple, correlated species
o  Sparse, non-continuous
responses
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Multivariate abundance data
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Multivariate abundance data
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Species respond to the environment in different ways, informed by different subsets of covariates




Multivariate abundance data
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Multivariate abundance data

e \What do we want?
o Variable selection (species respond
to a subset of covariates)
o Homogeneity pursuit (group
species according to their
responses to each covariate)

e Ideally, the statistical method also:
o Accounts for between-species

covariation (residual correlations ik
between columns of Y) i ——— Pp—
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Generalized Estimating Equations

e GEEs for multivariate abundance data
o  Speedy-ish
o Can account for residual correlations between species
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Generalized Estimating Equations

e GEEs for multivariate abundance data
o  Speedy-ish
o Can account for residual correlations between species

Consider a set of N sites {(x;,¥;);i = 1,..., N}, where y; = (y;1,...,yis) ", yi; denotes the record for the j-th species at the i-th site, and
x; = (zi1,...,7;p)" is a corresponding P-vector of covariates.

- Marginal mean: g{Ey (yi;)} = g(ui;) = ni; = x B;,

- Marginal variance function: Vary (y;;) = V(1ij, ¢;) €.8.. V(1ij, @;) = pij(1 — 1) for binary responses;

- Marginal working covariance: Covy (y;) = V; = AZWR(v)A}/?, where A; is a J x J diagonal matrix with entries V (1,5, ¢;)




Generalized Estimating Equations

e GEEs for multivariate abundance data
o  Speedy-ish
o Can account for residual correlations between species

Consider a set of N sites {(x;,¥;);i = 1,..., N}, where y; = (y;1,...,yis) ", yi; denotes the record for the j-th species at the i-th site, and
x; = (zi1,...,7;p)" is a corresponding P-vector of covariates.

- Marginal mean: g{Ey (yi;)} = g(ui;) = ni; = x B;,

- Marginal variance function: Vary (yi;) = V(1ij. ¢;) €.8.. V (15, @j) = pij(1 — pi;) for binary responses;

1/2

- Marginal working covariance: Covy (y;) = V; = A§/2R(7)Ai , where A; is a J x J diagonal matrix with entries V' (15, ¢;)

Solve
N N
S(B) = Z Si(B) = Z D[V (yi — ;) = 0,p,
i=1

i=1

where D; = W; X, X; = I, ® ] isa J x JP model matrix, W; is a J x J diagonal matrix of weights, and

Bl
B-|%

8] 10



Generalized Estimating Equations

e GEEs for multivariate abundance data
o  Speedy-ish
o Can account for residual correlations between species

e How to set up the working correlation?
o Rank-reduced form

R(y) =TT" +diag(¢,..., &), whereTisaJ x L matrix. Pick L < J

e How to estimate the (other) parameters?
o Moment/quasi-likelihood estimation

1



Thinking about homogeneity pursuit

e Suppose we have 5 species

(37 (B11 ... | Bue=—-05]... Bip]
B Bor .| Ba=05 | ... [Baop
Sl =B .| Ba=05 ... Bsp
:T Bax ... |Bak = —0.5| ... Bap
_'35 - _651 - 6514: — 05 R 65]3_




Thinking about homogeneity pursuit

e Suppose we have 5 species

(37 (f11 ... | Pue=—-05] ... Bip
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e \Write them in ascending order

Bk = Byk = —0.5, By x = Buyr = By, = 0.5. There are Jyp, = 2 < J distinct elements.




Thinking about homogeneity pursuit

e Suppose we have 5 species

(37 (B11 ... | Bue=—-05]... Bip]
B Bor .| Ba=05 | ... [Baop
Sl =B .| Ba=05 ... Bsp
- Bar . | Bae=—-05| ... Lup
_'65 - _651 - 65k — 05 R 65]3_

e \Write them in ascending order

Bk = Byk = —0.5, By x = Buyr = By, = 0.5. There are Jyp, = 2 < J distinct elements.

e Considerthe ordered successive differences 5@ — By, =0
Bk — Bk =1
By, — Bk =0
Be)e — Bk =0
e If we want homogeneity/clustering, then we want to shrink ordered successive
differences to zero 14



Thinking about sparsity

Suppose we have 5 species
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Thinking about sparsity

e Suppose we have 5 species

-BlT- (511 .| Bue=-025 ... Bip]
3] Bar ... Baw=-05 |... Bap

B = = 531 /83/4::0 63]3
T Ban .| Ba=-05 |... Bup
_/35 B _651 - Bsp, =0 s @ 65P_

e \Write them in ascending order by their absolute value
/8(|1|)>k — /6(|2|),k7 — O, /B(|3|)’k; — _025, /8(|4|),k’ — /8(|5|),k: — _05

e |Ifthere is sparsity, the coefficient with the smallest absolute value must be zero



Thinking about homogeneity pursuit + sparsity

e Key points. For each covariate:
a. To group species into a smaller number of “canonical” coefficients, shrink ordered
successive differences to zero

b. To achieve sparsity, shrink the coefficient with the smallest absolute value to zero.

m  Note only the smallest absolute value coefficient is needed!

17



Thinking about homogeneity pursuit + sparsity

e Key points. For each covariate:
a. To group species into a smaller number of “canonical” coefficients, shrink ordered
successive differences to zero
b. To achieve sparsity, shrink the coefficient with the smallest absolute value to zero.
m  Note only the smallest absolute value coefficient is needed!

e Augment the GEE with a penalty e.g., something based on

P J
Pr=A> | wilBaup sl + D wirl Bk — Bu-na
k=2 =2

Adaptive lasso Adaptive fused lasso of the

of the smallest ordered successive
absolute value differences

18



HPGEE

® Penalized GEE: Solve

N

Spen(B) = Z D/ V. 'y, — ) —

=1
P J
Py = AZ <w1k5(1),k| - Z Wik | Bk — 5(j1),k|>
k=2 =2

e On the surface, this looks pretty challenging!

dPy

B = 0;p, Where

A THEN A .
D Mracle T CER YO e
Vi ~" .

I M

Q) ‘\@ OCCURS B -ﬁ\'
t198

*T THINK You SHOULD BE MORE EXPLICIT HERE IN STEY Two™
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HPGEE (miracle in progress...)

e Turns out this is not too hard through reparametrization

Define

B x
B2k — Bk
Bayk — Bk

B,
By — By
313(:;),1 — B

Bk — Ba-1)k

_,3(./).1 = Bu-na

v Wi ,d(“])f) Y11 ... Vi ... U1p
550 ,8(2)‘;? &= ‘5(1).p Vg1 ... Vg ... Ugp
.. B@a).p — Be),p = |Us1 suw Uar w3z Uap| =T,
s ;3(,1)~p o= ‘1‘3(.]w1)1p i _‘UJI swm Ugk #ss /UJp_

Then a vectorized version of marginal mean of the GEE can be written as

g9(p) =n = Xvec(B") = Xvec(Y")

where vec(Y") = Mvec(B")and X = XM !, and M isa JP x JP sparse, invertible matrix whose elements are a function of B.

Journal of Machine Learning Research 17 (2016) 1-23 Submitted 11/15; Revised 6/16; Published 7/16

Fused Lasso Approach in Regression Coefficients Clustering
— Learning Parameter Heterogeneity in Data Integration

Lu Tang LUTANG@UMICH.EDU
Peter X.K. Song PXSONGGUMICH.EDU
Department of Biostatistics

Diomelrics ~ Volume 77, Issue 3
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HPGEE (miracle in progress...)

e Rewrite the GEE...
Redefine the marginal mean as g(u) = n = Xvec(Y "), and write D; = W; X;. Then solve

1=1

e ..andthe penalty

P J
P,\ =A z Z "l.l.’jk|‘l.“j‘1\7|

k=2 j=1

N N
ZSZ Z [.L,) = O_]p.

21



HPGEE (a few details)

Definition 1. Given tuning parameter A > 0, solve the HPGEE

dP)

P J
SHPGEE(T) - S(T) _— = OJP, where P,\ — )\Z Z wjk|vjk|

dY

and w; are set of adaptive weights constructed from the unpenalized GEE.

e Computationally, the problem is much easier

Adaptive lasso Adaptive fused lasso of the

of the smallest ordered successive
absolute value differences

k=2 3=1

Adaptive lasso on

reparametrized coefficients

22



Application to Great Barrier Reef biodiversity

e Presence-absence records
o ] =20 species; N = 1146 sites

7]
o
(3]
<

n
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Application to Great Barrier Reef biodiversity

Presence-absence records
o ] =20 species; N = 1146 sites
Ten environmental predictors +

intercept

o P =11 covariates

Aspect Bathymetry Bottom stress arbonate
-~ 3 N N 5 > b
o T T > Wy |
sl N /f\\ /g
v L _ v
204 », \\\
254 \?
Chlorophyll-a Oxygen
hendii TR b -
(/\
v

AN
-154 f
N

N

Temperature

A J

R%\ h
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Application to Great Barrier Reef biodiversity

e Presence-absence records
o ] =20 species; N = 1146 sites
e Ten environmental predictors +

intercept
o P =11 covariates

e Apply HPGEE with all covariates as
linear terms

- Marginal mean: @~ (u;;) = n;; = =/ B;;

- Marginal variance function: Vary (yi;) = i (1 — p45);

- Marginal working covariance: Covy (y;) =V, = Af/zR(fy)A»

1/2
2

, where R(+y) has a rank-reduced form with rank L = 3.
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Application to Great Barrier Reef biodiversity

Some level of sparsity

O

Slope and aspect non-informative
for all species;

Percent mud and Chlorophyll-a
most informative
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Application to Great Barrier Reef biodiversity

e Some level of sparsity

O

Slope and aspect non-informative
for all species;

Percent mud and Chlorophyll-a
most informative

e Lots of homogeneity

O

200 individual slopes compressed
to 60 canonical coefficients

Mean annual temperature is
grouped into five non-negative
canonical coefficients
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Application to Great Barrier Reef biodiversity

e Sparsity + homogeneity: Example with percent mud

Mud

Tuning parameter (lambda)

Coefficient value

Marbled turrid

Species Bivalve sp A Bivalve sp B Blunt-toothed crab Brittle stars CrabspA Heart urchin Horny sponges Minute carrier shell Pebble crab sp A Pebble crab sp B Saltwater clam sp A

~—— Seaurchin sp B Seastar Striated locust lobster Swimming crab Tuberculate flathead White long-armed crab

Sea snail sp A

Sea urchin sp A
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Closing remarks

e Manuscript accepted in Biometrics
o  Simulation study
o  Assess predictive performance in GBR application

e https://github.com/fhui28/HPGEE

e HPGEE != Species Archetype Model/Species guilds
o Clustering of species within covariates as opposed to entire their environmental response
(parsimony versus flexibility)

e Countless extensions e.g., spatial/temporal correlations, more flexible
regression models, large sample theory etc...

29


https://github.com/fhui28/HPGEE

= Thanks for

uestions?

francis.hui@anu.edu.au

https://francishui.netlify.app/

listening!
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An alternative to spatio-temporal LVMs

that is more scalable
(but hopefully about as flexible?)



Generalized Estimating Equations

e GEEs for multivariate abundance data
o  Speedy-ish
o Can account for residual correlations between species

e How to set up the working correlation?
o Rank-reduced form

R(y) =TT" +diag(¢,..., &), whereTisaJ x L matrix. Pick L < J

o Can also used other forms like independence and rely on the robustness property of GEE
(but lose efficiency)

e How to estimate the (other) parameters?
o Moment/quasi-likelihood estimators; discuss later
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e Fit the unpenalized GEE

N N
Solve S(B) = 3" S;(B) = . D]V, *(y; — ;) = 0;p and construct an M from this.

=1 1=1



HPGEE

e Fit the unpenalized GEE

N N
Solve S(B) =Y S;(B) =Y. D/ V,"'(y; — u:) = 0;p and construct an M from this.

=1 i=1

e Homogeneity pursuit and variable selection in GEEs

Definition 1. For a given tuning parameter A > 0, solve the HPGEE

P J

Shrcee(Y) = S(T) — A Z Z w;rsgn(vjr) = 0,p,

k=2 j=1

where the wj;'s are set of adaptive weights (also) constructed from the unpenalized GEE.

o Note species-specific intercept not penalized

o Please see the paper for details regarding constructing of adaptive weights
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HPGEE (a few details)

Definition 1. Given tuning parameter A > 0, solve the HPGEE

Surcee(Y) = S(Y) — —= = 0,p, where Py = )\Z Z Wik | vjk|

k=2 3=1

and w; are set of adaptive weights constructed from the unpenalized GEE.

e Computationally, the problem is much easier

Adaptive lasso Adaptive fused lasso of the

Adaptive lasso on
of the smallest ordered successive

absolute value differences

reparametrized coefficients

o lteratively solve a penalized generalized least squares problem e.g., glmnet

o Maximum pseudo-likelihood estimation to solve dispersion and working correlation matrix e.g.,

factanal
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HPGEE (a few details)

Definition 1. For a given tuning parameter A > 0, solve the HPGEE

P J
Shrcee(Y) = /\ZZI vjsgn(vjr) = 0,p,

k=2 j=1

where the w;;'s are set of adaptive weights (also) constructed from the unpenalized GEE.

e Tuning parameter selection: Score Information Criterion

SIC,(\) = Z Si(Y) LX) S(X) + 7Y Y I(0aju #0).

k=2 j=1
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Application to Great Barrier Reef biodiversity

Spatial blocks

The random fold assignment

e Assess out-of-sample predictive 0]
performance
o  Five-fold block cross-validation (-80% 1281 | e
training sites per fold) using blockCV ) | §
1 3
e Compare to four methods: sl
o  Penalized GEE with adaptive lasso %
(sparsity only) -y T’
o Glmnet (sparsity only; independent | o Sk | 4
species) o g
o Unpenalized GEE (no sparsity or RS
clustering) , [,
o  GEE + K-Means (clustering only) = i
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Application to Great Barrier Reef biodiversity

e Compare to four methods:
o Penalized GEE with adaptive lasso (sparsity only)

o glmnet (sparsity only; independent species)
o Unpenalized GEE (no sparsity or clustering)
o  GEE + K-Means (clustering only)
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Closing remarks

Manuscript accepted in Biometrics

https://github.com/thui28/HPGEE

HPGEE != Species Archetype Model/Species guilds
o Clustering of species within covariates as opposed to entire their environmental response
(parsimony versus flexibility)

Can you do this for multivariate GLMMs, and joint species distribution/latent

variable models?
o Yes, but the computation becomes harder (work in progress)

Countless extensions e.g., spatial/temporal correlations, more flexible
regression models, large sample theory etc...

39


https://github.com/fhui28/HPGEE

