class: center, middle, inverse, title-slide .title[ # How Does Uncertainty Influence Potential to Make Decisions when Integrating Complex Datasets? ] .author[ ### Peter Green, Esther Meenken, Delphine Rapp ] .institute[ ### AgResearch ] .date[ ### 2023/11/29 ] --- <style> h1, .inverse h3 { color: #B1CE62; } </style> # Introduction - Data Integration -- - Uncertainty - Modelled and unmodelled -- - Sensitivity -- - Goal: incorporate sensitivity analysis into case studies --- # Case Study - "Integrating Data Along the Supply Chain to Determine the Impact of Length of Drought on Food Safety Risks" -- - Data from: - Processors - Weather indices -- - About 500 processed animals --- # Case Study - Data <img src="data:image/png;base64,#peter_green_IBS_2023_files/figure-html/unnamed-chunk-2-1.svg" width="98%" style="display: block; margin: auto;" /> --- # Simplified Research Question <img src="data:image/png;base64,#peter_green_IBS_2023_files/figure-html/unnamed-chunk-3-1.svg" width="95%" style="display: block; margin: auto;" /> --- # Carcass Weight <img src="data:image/png;base64,#peter_green_IBS_2023_files/figure-html/unnamed-chunk-4-1.svg" width="95%" style="display: block; margin: auto;" /> # Carcass Weight <img src="data:image/png;base64,#peter_green_IBS_2023_files/figure-html/unnamed-chunk-5-1.svg" width="95%" style="display: block; margin: auto;" /> --- # Modelling Principles - Placeholder model -- - Simple but not too simple -- - Access to internals -- - Makes for nice visualisations -- - `\(\Rightarrow\)` Gaussian Graphical Model --- # Gaussian Graphical Model `\(\Sigma = \begin{bmatrix}157.02 & 23.10 & 60.86 & -0.83 & 1.53 \\23.10 & 19.71 & 5.55 & -0.18 & -0.40 \\60.86 & 5.55 & 27.88 & -0.31 & 0.92 \\-0.83 & -0.18 & -0.31 & 0.09 & -0.02 \\1.53 & -0.40 & 0.92 & -0.02 & 0.16\end{bmatrix}\)` --- # Gaussian Graphical Model `\(\Sigma^{-1} = \begin{bmatrix}0.06 & -0.03 & -0.12 & 0.07 & 0.08 \\-0.03 & 0.08 & 0.04 & 0.08 & 0.27 \\-0.12 & 0.04 & 0.31 & -0.07 & -0.52 \\0.07 & 0.08 & -0.07 & 12.16 & 1.45 \\0.08 & 0.27 & -0.52 & 1.45 & 9.62\end{bmatrix}\)` --- # Gaussian Graphical Model `\(\hat \Sigma \vphantom{\Sigma}^{-1} = \begin{bmatrix}- & - & -0.12 & - & 0.08 \\- & 0.08 & - & 0.08 & 0.27 \\-0.12 & - & 0.31 & - & -0.52 \\- & 0.08 & - & 12.16 & 1.45 \\0.08 & 0.27 & -0.52 & 1.45 & 9.62\end{bmatrix}\)` <img src="data:image/png;base64,#peter_green_IBS_2023_files/figure-html/unnamed-chunk-9-1.svg" width="50%" style="display: block; margin: auto auto auto 0;" /> --- # Gaussian Graphical Model `\(\hat \Sigma \vphantom{\Sigma}^{-1} = \begin{bmatrix}- & - & -0.12 & - & 0.08 \\- & 0.08 & - & 0.08 & 0.27 \\-0.12 & - & 0.31 & - & -0.52 \\- & 0.08 & - & 12.16 & 1.45 \\0.08 & 0.27 & -0.52 & 1.45 & 9.62\end{bmatrix}\)` <img src="data:image/png;base64,#peter_green_IBS_2023_files/figure-html/unnamed-chunk-11-1.svg" width="50%" style="display: block; margin: auto auto auto 0;" /> --- # Modelled Network <img src="data:image/png;base64,#peter_green_IBS_2023_files/figure-html/unnamed-chunk-12-1.svg" width="95%" style="display: block; margin: auto;" /> --- # Modelled Network <img src="data:image/png;base64,#peter_green_IBS_2023_files/figure-html/unnamed-chunk-13-1.svg" width="95%" style="display: block; margin: auto;" /> --- # Modelled Network <img src="data:image/png;base64,#peter_green_IBS_2023_files/figure-html/unnamed-chunk-14-1.svg" width="95%" style="display: block; margin: auto;" /> --- # Kinds of Sensitivity -- - input sensitivity: `\(\frac{\partial f}{\partial x}\)` -- - parameter sensitivity: `\(\frac{\partial f}{\partial \beta}\)` -- - uncertainty sensitivity: `\(\frac{\partial \sigma(f)}{\partial \sigma(x)}\)` -- - uncertainty propagation: `\(\frac{\partial \sigma(f)}{\partial \sigma(\beta)}\)` -- - data sensitivity: `\(\frac{\partial f}{\partial X_j}\)` -- - sensitivity of uncertainty to the data: `\(\frac{\partial \sigma(f)}{\partial X_j}\)` -- - sensitivity to latent variables: `\(\frac{\partial f}{\partial\lambda}\)` -- - model sensitivity: `\(\frac{\partial f}{\partial \operatorname{Model}}\)` --- # Sensitivity for Simple Models -- - `\(\hat y_i = \hat\beta_0 + \hat\beta_1 x_i\)` - `\(\Delta y_i = \hat\beta_1 \Delta x_i\)` -- - `\(\log\left(\frac{\hat\pi_i}{1-\hat\pi_i}\right) = \hat\beta_0 + \hat\beta x_i\)` -- - `\(\mathbf{y}_i = \operatorname{DNN}(\mathbf{x}_i; \mathbf{w})\)` --- # Sensitivity Visualisation <img src="data:image/png;base64,#peter_green_IBS_2023_files/figure-html/unnamed-chunk-15-1.svg" width="95%" style="display: block; margin: auto;" /> --- # Sensitivity Visualisation <img src="data:image/png;base64,#peter_green_IBS_2023_files/figure-html/unnamed-chunk-16-1.svg" width="95%" style="display: block; margin: auto;" /> --- # Sensitivity Visualisation <img src="data:image/png;base64,#peter_green_IBS_2023_files/figure-html/unnamed-chunk-17-1.svg" width="95%" style="display: block; margin: auto;" /> --- # Sensitivity Visualisation <img src="data:image/png;base64,#peter_green_IBS_2023_files/figure-html/unnamed-chunk-18-1.svg" width="95%" style="display: block; margin: auto;" /> --- # Sensitivity Visualisation <img src="data:image/png;base64,#peter_green_IBS_2023_files/figure-html/unnamed-chunk-19-1.svg" width="95%" style="display: block; margin: auto;" /> --- # Sensitivity Visualisation <img src="data:image/png;base64,#peter_green_IBS_2023_files/figure-html/unnamed-chunk-20-1.svg" width="95%" style="display: block; margin: auto;" /> --- # Sensitivity Visualisation <img src="data:image/png;base64,#peter_green_IBS_2023_files/figure-html/unnamed-chunk-21-1.svg" width="95%" style="display: block; margin: auto;" /> --- # Sensitivity Visualisation <img src="data:image/png;base64,#peter_green_IBS_2023_files/figure-html/unnamed-chunk-22-1.svg" width="95%" style="display: block; margin: auto;" /> --- # Discussion - Any questions -- ... or statements? -- - Or suggestions