Peng Su¹, Garth Tarr¹, Samuel Muller*,1,2 and Suojin Wang³

¹University of Sydney, ²Macquarie University, ³Texas A&M University *samuel.muller@mq.edu.au

Biometrics 2023

Take home messages

Motivation

Cellwise outliers are a reality and call for robust methods

Method

Cellwise regularized Lasso with regcell (available on Github)

■ Simultaneously identify outliers, select and estimate parameters through regularization

Results

- Region of good selection and prediction performance
- But, not always

Outline

- Background
- Regularized regression
- Empirical studies
- Real data application
- 5 Summary

Cellwise outliers in context of variable selection

Outlying
No
Yes

4□ > 4Ē > 4Ē > 4□ >

Background

Context of talk:

Background

- Cellwise outliers in the design matrix
- Outliers in the response
- Linear regression framework for now
- Balancing competing elements when both p and p/n is large
- Focus on selection and prediction

Comments:

- In the future, using resampling for additional inference considerations
- But, resampling in context of cellwise outliers needs careful thought

Motivation: Model hip T-score with few genes

- Bone mineral density data from Reppe et al (2010; Bone)
- Raw data:
 - 54,675 gene expression measurements of 84 Norwegian women
 - Outcome of interest is the total hip T-score
- Cleaned data:
 - Screen p = 100 genes that have the largest robust correlation with hip T-score
 - Screened variables exhibit contamination rate of 3.6% with probe (column) 236831 having highest contamination of 9.5% and observation (row) 13 of 22%

Regularized regression Empirical studies Real data application Sociooo oo oo oo

Outlier cell map for 100 screened variables

Background

- **DDC:** Detecting Deviation Cells (Rousseeuw and Bossch, 2018) Robustly predict \hat{x}_{ii} from remaining variables, compare with x_{ii}
- Cellflager (Raymaekers and Rousseeuw, 2019)

$$\operatorname{argmin}_{oldsymbol{\Delta}_i} (oldsymbol{x}_i - oldsymbol{\Delta}_i - oldsymbol{\mu}) oldsymbol{\Sigma}^{-1} (oldsymbol{x}_i - oldsymbol{\Delta}_i - oldsymbol{\mu}) + \lambda |oldsymbol{\Delta}_i|$$

- Cellwise M-estimator (Debruyne et al., 2019)
 Detect rowwise outliers, then detect which cells contribute most
- Read: Challenges of cellwise outliers (Raymaekers and Rousseeuw, 2023; arXiv)

Background

Lasso type regularization: not robust

■ Lasso regularization uses L₁ loss

$$\underset{\boldsymbol{\beta}}{\operatorname{argmin}} \frac{1}{2} \|\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\beta}\|_{2}^{2} + \lambda |\boldsymbol{\beta}|_{1}$$

■ More general regularized objective loss

$$\underset{\boldsymbol{\beta}}{\operatorname{argmin}} \frac{1}{2} \| \boldsymbol{y} - \boldsymbol{X} \boldsymbol{\beta} \|_2^2 + P_{\lambda}(|\boldsymbol{\beta}|)$$

But: Sometimes Lasso does well, even in presence of outliers

Cellwise regularization: adjusting the X

Chen et al. (2013; ICML) suggested but did not further pursue adjusting X

$$\underset{\boldsymbol{\beta},\boldsymbol{\Delta}}{\operatorname{argmin}} \frac{1}{2} \|\boldsymbol{y} - (\boldsymbol{X} - \boldsymbol{\Delta})\boldsymbol{\beta}\|_2^2 + \eta |\boldsymbol{\Delta}|_1$$

- Solution is non-convex and non-tractable because of the bi-linear term $\Delta\beta$
- Targets dealing with cellwise x outliers (but may also adjust some y outliers)

Cellwise regularization can be equivalent to Winsorization

■ Modify the deviation of the design matrix

$$\operatorname*{argmin}_{\boldsymbol{\Delta}} \frac{1}{2} \| \boldsymbol{X} - \boldsymbol{\Delta} \|_F^2 + \eta |\boldsymbol{\Delta}|_1$$

Solved by

$$\hat{\Delta}_{ij} = \left\{ egin{array}{ll} \operatorname{sign}(x_{ij})(|x_{ij}| - \eta), & \operatorname{if}|x_{ij}| > \eta \\ 0, & \operatorname{if}|x_{ij}| \leq \eta \end{array} \right.$$

- This is equivalent to Winsorization
- How to combine minimising regression loss and Winsorization?

Residual moderated Winsorization adjusts **X** more subtly

■ Towards our solution: modify residual and deviation loss

$$\underset{\beta, \Delta}{\operatorname{argmin}} \frac{1}{2} \| \boldsymbol{y} - (\boldsymbol{X} - \Delta)\beta \|_{2}^{2} + \underbrace{\frac{1}{2} \| \boldsymbol{X} - \Delta \|_{F}^{2} + \eta |\Delta|_{1}}_{\text{winsorize elements in } \boldsymbol{X}}$$

- That is, minimise objective loss by shrinking only a few cells
- Cellwise outliers: expect in addition to a large 'cell deviation' a large residual

Cellwise regularization: better allowing for y outliers

■ Add term to accommodate for y outliers

$$\underset{\beta,\Delta,\zeta}{\operatorname{argmin}} \frac{1}{2} \| \boldsymbol{y} - (\boldsymbol{X} - \boldsymbol{\Delta})\beta - \boldsymbol{\zeta} \|_2^2 + \frac{1}{2} \| \boldsymbol{X} - \boldsymbol{\Delta} \|_F^2 + \eta |\boldsymbol{\Delta}|_1 + \theta |\boldsymbol{\zeta}|_1$$

Add $\lambda |\beta|_1$ to select simultaneously active variables

$$\underset{\beta, \Delta, \zeta}{\operatorname{argmin}} \frac{1}{2} \| \boldsymbol{y} - (\boldsymbol{X} - \Delta)\beta - \zeta \|_2^2 + \frac{1}{2} \| \boldsymbol{X} - \Delta \|_F^2 + \lambda |\boldsymbol{\beta}|_1 + \eta |\Delta|_1 + \theta |\zeta|_1$$

Github: https://github.com/PengSU517/regcell

README.md

regcell

- This package provides the functions to compute the CR-Lasso (cellwise regularized Lasso) proposed by Peng Su, Samuel Muller, Garth Tarr and Suojin Wang. The manuscript could be found soon on Arxiv.
- We added a demonstration (demo) in vignettes.
- We also created an online R repository with some example scripts. https://posit.cloud/content/6051440

To get started, you can install the package using:

```
remotes::install_github("PengSU517/regcell", build = FALSE)
```

For macOS users, if there are some problems with gfortran, you can try install the GNU Fortran compiler from this page: https://mac.r-project.org/tools/.

If there are still some errors, you could extract functions from R and src folders.

Tuning parameters: selecting λ using the BIC

- Many criteria and not yet fully optimised for our method
- We explored with AIC and BIC using the Loss

$$L = 2 \cdot \sum_{i=1}^{n} \rho_{\mathsf{H}} \left(\frac{y_i - (\boldsymbol{x}_i^{\star} - \hat{\boldsymbol{\Delta}}_i^{\star}) \hat{\boldsymbol{\beta}}^{\star}}{\hat{\sigma}}; \theta \right)$$
$$= \left\| \frac{\boldsymbol{y} - (\boldsymbol{X}^{\star} - \hat{\boldsymbol{\Delta}}^{\star}) \hat{\boldsymbol{\beta}}^{\star}}{\hat{\sigma}} - \hat{\boldsymbol{\zeta}}^{\star} \right\|_{2}^{2} + 2\theta |\hat{\boldsymbol{\zeta}}^{\star}|_{1}.$$

■ Then AIC = L + 2k and BIC = $L + \log(n)k$

- BIC as the default to tune λ
- Set $\eta = z_{0.995} = 2.576$, similar as in DDC (Rousseeuw and Bossche, 2018; Technometrics)
- Set a conservative $\theta = 1$, alternatively $\theta = z_{0.995}$ or other plausible values

Comparing five alternative methods with CR-Lasso

- Sparse Shooting S-estimator (SSS)
- 2 Robust Lars (RLars)
- 3 Adaptive Lasso regularized MM-estimator (MM-Lasso)
- Sparse least trimmed squares (SLTS)
- 5 Lasso

Moderate dimensional setting

- Sample size n = 200
- Number of features p = 50 including $p_1 = 10$ active
- Response y is generated by choosing

$$lacksquare$$
 $eta = (\mathbf{1}_{10}^{\top}, \mathbf{0}_{p-10}^{\top})^{\top}$

$$\epsilon_i \sim N(0,3^2)$$

$$lacksquare$$
 $oldsymbol{x}_i \sim N(oldsymbol{0}, oldsymbol{\Sigma}_{xx})$ or $oldsymbol{x}_i \sim t_4(oldsymbol{0}, oldsymbol{\Sigma}_{xx})$, with $\Sigma_{ii} = 0.5^{|i-j|}$

- Contamination rate e varies over 0%, 2% and 5%
- Outliers are generated equally from $N(\gamma, 1)$ and $N(-\gamma, 1)$

Additional settings are shown in Su et al (2023; Preprint)

Performance metrics

- Root mean squared prediction error (RMSPE)
- Number of true positives (TP)
- Number of false negatives (FN)
- Number of false positives (FP)
- Balancing TP, FN and FP through

$$\mathsf{F}_1 = \frac{2\,\mathsf{TP}}{2\,\mathsf{TP} + \mathsf{FN} + \mathsf{FP}}$$

gularized regression Empirical studies Real data application oooooo ooo

Prediction results: Selection accuracy

Prediction results: Mean squared prediction errors

Regularized regression Empirical studies Real data application Summary

Recall **X** in bone mineral density data

Simulation with this real **X**

Repeat 200 times:

- 1 Obtain a clean (imputed) dataset \dot{X} using DDC
- Randomly pick ten active predictors in each simulation run and for these set $\beta_i \sim U(1, 1.5)$
- **3** Generate an artificial response $\mathbf{y} = \check{\mathbf{X}}\boldsymbol{\beta} + \boldsymbol{\varepsilon}$ using screened clean predictors and $\varepsilon \sim N(\mathbf{0}, 0.5^2 I)$
- 4 Train model on 80% observations from the original (contaminated) dataset
- 5 Validate on the remaining 20% of the imputed (clean) dataset to assess prediction performance

Results

- **■** Best performance
- Second best performance

	CR-Lasso	SSS	RLars	MM-Lasso	SLTS	Lasso
RMSPE	1.32	2.40	1.73	1.91	2.75	1.64
TP	9.14	6.55	7.92	7.84	6.14	9.31
TN	74.32	<i>75.88</i>	77.05	73.49	75.75	67.83
F ₁	0.55	0.45	0.52	0.48	0.41	0.46

Motivation

Cellwise outliers are a reality and call for robust methods

Method

Cellwise regularized Lasso with regcell (available on Github)

Simultaneously identify outliers, select and estimate parameters through regularization

Results

- Region of good selection and prediction performance
- But, not always

Future work

Heavy tails in predictors; stability selection; robust inference through resampling

Contact me on samuel.muller@mq.edu.au

Acknowledgements:

- Chinese Scholarship Council #201906360181 (Peng Su)
- Australian Research Council Discovery Project #210100521 (Garth Tarr and Samuel Muller)
- Sydney Mathematical Research Institute International Visitor Program (Suojin Wang)

Reference:

Su, P., Muller, S., Tarr, G., and Wang, S. (2023). CR-Lasso: Robust cellwise regularized sparse regression. *arXiv preprint*, http://arxiv.org/abs/2307.05234.

