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regression irical studies eal data application

Take home messages

Cellwise outliers are a reality and call for robust methods

Cellwise regularized Lasso with regcell (available on Github)

m Simultaneously identify outliers, select and estimate parameters through
regularization

m Region of good selection and prediction performance
m But, not always
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Cellwise outliers in context of variable selection
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Background
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Robust statistics for modern inference problems

m Context of talk:

Cellwise outliers in the design matrix

Outliers in the response

Linear regression framework for now

Balancing competing elements when both p and p/nis large
Focus on selection and prediction

m Comments:

m In the future, using resampling for additional inference considerations
m But, resampling in context of cellwise outliers needs careful thought
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Motivation: Model hip T-score with few genes

m Bone mineral density data from Reppe et al (2010; Bone)

m Raw data:

m 54,675 gene expression measurements of 84 Norwegian women
m Outcome of interest is the total hip T-score

m Cleaned data:

m Screen p = 100 genes that have the largest robust correlation with hip T-score
m Screened variables exhibit contamination rate of 3.6% with probe (column) 236831
having highest contamination of 9.5% and observation (row) 13 of 22%
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Outlier cell map for 100 screened variables

Observations
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Background
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Growing cellwise outlier detection literature
m DDC: Detecting Deviation Cells (Rousseeuw and Bossch, 2018)
Robustly predict X; from remaining variables, compare with x;
m Cellflager (Raymaekers and Rousseeuw, 2019)
argmina, (X — Aj = W)= (X — Aj — p) + A|A]

m Cellwise M-estimator (Debruyne et al., 2019)
Detect rowwise outliers, then detect which cells contribute most

m Read: Challenges of cellwise outliers (Raymaekers and Rousseeuw, 2023; arXiv)
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Regularized regression
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Lasso type regularization: not robust

m Lasso regularization uses L; loss
-1 2
argmin |y — XB|3+ A/
B
m More general regularized objective loss
1
argmin 5y = XB1lz + (1)

m But: Sometimes Lasso does well, even in presence of outliers
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Regularized regression
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Cellwise regularization: adjusting the X

m Chen et al. (2013; ICML) suggested but did not further pursue adjusting X
1
argmin S [y — (X — A)BI5 +nlAls
B,A
m Solution is non-convex and non-tractable because of the bi-linear term A3

m Targets dealing with cellwise x outliers (but may also adjust some y outliers)
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Regularized regression
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Cellwise regularization can be equivalent to Winsorization

m Modify the deviation of the design matrix
1
argmin ~ || X — A2 + 7] Al
A 2

m Solved by

A = si8nOG)(xg = n), if x>
7o, if [x;] <

m This is equivalent to Winsorization
m How to combine minimising regression loss and Winsorization?
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Regularized regression
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Residual moderated Winsorization adjusts X more subtly

m Towards our solution: modify residual and deviation loss

1 1
argmin 5|y — (X — A)BI5 + 5| X — AllE+nlAl
B,A

-~

winsorize elements in X

m That is, minimise objective loss by shrinking only a few cells
m Cellwise outliers: expect in addition to a large ‘cell deviation’ a large residual
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Regularized regression
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Cellwise regularization: better allowing for y outliers

m Add ¢ term to accommodate for y outliers

. 1
argmin [y — (X = A)8 = C[l5 + 51X = Allz + 0] Al +0/¢];
B,AC

yh=by

m Add )\|3|; to select simultaneously active variables

.1 1
argmin 5|y — (X = A)8 = C[l3 + 51X = Allz + ABl1 + nAls + 0[¢y
B,A¢
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Github: https://github.com/PengSU517/regcell

README.md

regcell

« This package provides the functions to compute the CR-Lasso (cellwise regularized Lasso) proposed by Peng
Su, Samuel Muller, Garth Tarr and Suojin Wang. The manuscript could be found soon on Arxiv.

« We added a demonstration (demo) in vignettes.
« We also created an online R repository with some example scripts. https://posit.cloud/content/6051440

To get started, you can install the package using:

remotes: :install_github("PengSU517/regcell”, build = FALSE)

For macOS users, if there are some problems with gfortran , you can try install the GNU Fortran compiler from
this page: https://mac.r-project.org/tools/.

If there are still some errors, you could extract functions from R and src folders.
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Regularized regression
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Tuning parameters: selecting A using the BIC

m Many criteria and not yet fully optimised for our method

m We explored with AIC and BIC using the Loss

A * _ AX)G*
L=2-ZPH<” (x,& ,)B;9>
i=1

m Then AIC = L + 2k and BIC = L + log(n)k
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Regularized regression
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Tuning parameters: selecting A\, n and 6

m BIC as the default to tune \

m Setn = Zpg95 = 2.576, similar as in DDC (Rousseeuw and Bossche, 2018;
Technometrics)

m Set a conservative ¢ = 1, alternatively § = z, 995 Or other plausible values
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Empirical studies
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Comparing five alternative methods with CR-Lasso

Sparse Shooting S-estimator (SSS)

Robust Lars (RLars)

Adaptive Lasso regularized MM-estimator (MM-Lasso)
Sparse least trimmed squares (SLTS)

Lasso
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Empirical studies
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Moderate dimensional setting

m Sample size n =200
m Number of features p = 50 including p; = 10 active
m Response y is generated by choosing

3= (1T070;—10)T
e~ N(0,32) o
B X, ~ N(0,%,) or X; ~ 14(0, =) , with £; = 0.5///

m Contamination rate e varies over 0%, 2% and 5%
m Outliers are generated equally from N(v,1) and N(—~v,1)

Additional settings are shown in Su et al (2023; Preprint)
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Empirical studies
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Performance metrics

m Root mean squared prediction error (RMSPE)
m Number of true positives (TP)

m Number of false negatives (FN)

m Number of false positives (FP)

m Balancing TP, FN and FP through

2TP

Fi=
LT 2TP+FN+FP
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Empirical studies
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Prediction results: Selection accuracy
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Prediction results: Mean squared prediction errors
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Real data application
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Recall X in bone mineral density data
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Real data application
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Simulation with this real X

Repeat 200 times:
Obtain a clean (imputed) dataset X using DDC
Randomly pick ten active predictors in each simulation run and for these set
B~ U(1,1.5)
Generate an artificial response y = X3 + € using screened clean predictors and
e ~ N(0,0.52])
Train model on 80% observations from the original (contaminated) dataset

Validate on the remaining 20% of the imputed (clean) dataset to assess
prediction performance
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Real data application
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Results

m Best performance
m Second best performance

CR-Lasso SSS RLars MM-Lasso SLTS Lasso

RMSPE 132 240 1.73 191 275 1.64
TP 9.14 6.55 7.92 7.84 6.14  9.31
TN 7432 75.88 77.05 73.49 75.75 67.83
F4 0.55 045 0.52 048 0.41 0.46
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Cellwise outliers are a reality and call for robust methods

Method
Cellwise regularized Lasso with regcell (available on Github)

m Simultaneously identify outliers, select and estimate parameters through
regularization

m Region of good selection and prediction performance

m But, not always

Heavy tails in predictors; stability selection; robust inference through resampling
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Summary
oe

Contact me on samuel.muller@mgq.edu.au
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