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Recall

Recall. . .

Zero-inflated Examples
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> data(tikus, package = "mvabund")
> tikusdat <- mvabund(tikus$abund)
> prop.table(table(tikusdat == 0))

FALSE  TRUE
0.1164 0.8836
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Recall
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> data(spider, package = "mvabund")
> spiddat <- as.mvabund(spider$abund)
> prop.table(table(spiddat == 0))

FALSE  TRUE
0.5417 0.4583




Recall
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data(solberg, package = "mvabund")
> solbdat <- as.mvabund(solberg$abund)
prop.table(table(solbdat == 0))

v

FALSE  TRUE
0.3884 0.6116
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What is Heaped Data?
Further Motivation: Heaped Data
What is Heaped Data?

Heaping is a very common aberration in retrospective self-reported survey data,
e.g., “"How many cigarettes did you smoke last week?", “At what age did
you quit smoking?’

o Often characterized by an excess of multiples of 10 or 5 upon rounding, e.g.,

20 for a pack of cigarettes.

o lts effect on inference is usually unpredictable, e.g., the direction of bias
depending on multiple heap locations.

Heaping is a form of measurement error.
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[ZT YR VIGVELTH BN EETERDEY I What is Heaped Data?

Some real examples:

self-reported smoking rates (e.g., Lewis-Esquerre et al. 2005, Wang and
Heitjan 2008, Wang et al. 2012),

age reported in multiples of 5 (e.g., Stockwell and Wicks 1974),
duration of breastfeeding (e.g., Singh et al. 1994),

household total expenditure (e.g., Browning et al. 2003),
number of drug partners (e.g., Roberts and Brewer 2001),

age at menopause (e.g., Crawford et al. 2002).

Also known as digit preference and heaped data, Crawford et al. (2015):
“Inference for heaped data is an important statistical problem.”

Heaping is reviewed in Wang et al. (2012). To date, methods and software for
heaping have been largely inadequate.

There seems only one R package that deals with heaped data: Kernelheaping, and
this is not for estimation.
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Further Motivation: Heaped Data M=EHEE)

Example(s)
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Figure: The raw data are capped and come from VGAMdata. (a) Spikeplot of smoking
duration from 5525 current or past smokers in a large cross-sectional study, from xs.nz.
(b) Flamingo Hotel length of stay proportions, from flamingo.
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The GAITD Combo Model

The Main ldea

Combine alteration (hurdle), inflation, deflation and truncation into a single
model.

Precedence of the operators:
@ Truncation first,
@ alteration next,
@ inflation and deflation last.

Allow parametric and nonparametric alteration, inflation and deflation. Hence 7
types of special values.

Wish to offer maximum flexibility = more usefulness.

GAITD Regression 10/64



All the Extensions
All the Extensions

Let R be the support of the parent (base) distribution, e.g., {0,1,...} for the
Poisson. Extend previous work in three directions:

(I) Any subset of the support can be altered, inflated, deflated or truncated,
cf. treating only the singleton {0} as special. The first three are denoted A,
Z, and D with finite cardinality, but | 7| = oo permitted.

(I1) Rather than allowing only one of A, Z D and T, the operators are combined
into a single model and are allowed to operate concurrently. The A, Z, D
and 7 are mutually disjoint.

(1) Utilizing (1) and (I1) on A and Z, parametric and nonparametric forms are
spawned. These are further combined into a single model, called the GAITD
combo; 8§ = {Ap, Anp,Zp; LnpsDp, Dnp, T}

(IV) Although we develop (1)—(I1) mainly for 1- and 2-parameter count parent
distributions (Poisson, logarithmic, zeta, NB) our work is envisaged for
continuous distributions.

e e



The GAITD Combo Model BVAIRLENSSEELTH

Why General Truncation?f

@ In the lower and upper tails is obvious.

@ Also, e.g., asking for a favourite number between 0 and 20 say, it is likely
that tetraphobia in East Asian culture and triskaidekaphobia in Western
culture would show truncation or deficits of 4s and 13s respectively.

,
s

IS~

Figure: Triskaidekaphobia and other nasties. An elevator in an apartment building
in Shanghai. Which floor number(s) are missing? Sources: Wiki and T. Jin.
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GAITD Combo PMF

Pr( Yi=y,0n, Wp, 0., d’p: 9, 1/}p7 05, Whp, ¢npa 'Ipnp) =

0, yeT,
wpfaly)/ 25 falu), y € Ap,
ueA,

Ws, y:asEAnpa S:17"'7|Anp|7
Afr(y)+opfily)/ >0 filu), y € Ip,

ueZ, (1)
Afr(y)+ ¢s, Yy=1is €Lnp, s=1,...,|Tnpl,
Afe(y) —¥pfs(y)/ X fs(u), y € Dp,

ueD,
Af‘fr(}’)_djsy y=ds€an7 5:1»-”7‘,an|:
Afr(y), y €R\S,

where the normalizing constant is

[Anpl | Znpl |Dapl
1—wp—p+Pp— leu— Zlff’u‘i‘ leu
A = T = S T (2)
11— X @)= X (1)
ac{Ap, Anp} teT

A 7-component mixture model with nested support & multinomial logit model!
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LUK R TR VELE  GAITD Combo PMF
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Figure: Heaped and/or seeped data—idealized forms in (a)—(c). Here,

I, = {5,10,15,20}, D, = {4,6,9,11,14,16,19,21}, 7 = {0} with w, = 0.15,

tp = 0.15, pr = 10, kr = 10 so that fr = f, = f; = NB(10, 10) PMF. (a) GIT-NB-NB;
(b) GTD-NB-NB with the dip probabilities shown; (c) GITD-NB-NB-NB combines them
together; (d) GAT-NB-MLM(w,, = (0.09,0.03,0.09,0.04)7). Colours: see p.36.
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LUK R TR VELE  GAITD Combo PMF
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Figure: Heaped and/or seeped data—idealized forms in (a)—(c). Here,

7, = {0,5,10,15,20,25}, A, or Ay = {1,6,11,16,21,26}, T = {31,32,...} with
¢p =0.2, wp = 0.2, O, = 0.01 is the shape parameter. (a) GIT—zeta—zeta;

(b) GAT—zeta—zeta; (c) GAIT-zeta-zeta-zeta combines them together;

(d) GAT-zeta-MLM(w,, = (0.02,0.07,0.06,0.09,0.04,0.08) 7). Colours: see p.36.
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GAITD Combo PMF
Seven Modes

GAITD regression can handle bimodality, trimodality,... up to 7 modes!

(@

Probability

Figure: A GAITD-NB distribution with seven modes; (a) overall masked PMF; (b) PMF
decomposed by the special values using colour and various line types, e.g., the dip
probabilities appear in reddish dashed lines.
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LUK\ o NIy RUVEEN GAITD Combo PMF

(a) Y= (b) Yi=

[Anpl
1= 2 ws
s=1
a as VR ) Ay i 2 o ATyl Y~ fr
(c) Yi =

wp fular)
[Ap] L 1—- Wy

2 falas)
a as e aal YV, ¢ A, iy Qg e ALl Yo~ fr

Figure: (a) GA-fz—MLM, (b) GI-—MLM, (c) GA-fr—fu, (d) Gl-fr—f,, where Yx
corresponds to the parent distribution and Y. is the response of interest.
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LUK R TR VELE  GAITD Combo PMF

Notation and Nomenclaturef

@ Subscripts p for parametric, np for nonparametric.
@ Operators and sets:

> Alteration A,, Anp

> Inflation Z,, Zpp

» Truncation 7,

> Deflation Dp, Dpp
Parametric distributions:

» Parent £,

> Altered (mixture) f,

Inflated (mixture) £,
> Deflated (mixture) f5

v

Call ws a heaping probability if ws > f.(as), else a seeping probability .

Use wr,) = {wj 1 a; = a} so that ), a-wr,) equals Z,-Lzl aj - wi.

R is the support, S are the special values.
I(-) is the indicator function, A has cardinality |A|.

GAITD Regression 18 /64



Answerable Questions
o generally-altered regression explains why observations are there,

o generally-inflated regression accounts for why they are there in excess, and

o generally-deflated regression explains why observations are not there.

Associated terms:
° versus .

° versus data.

GAITD Regression 19/64



LUK R TR VELE  GAITD Combo PMF

Some Parent Distributions

t
Distribution | R Mean PMF 1(y) Parameter space
Poisson 0(1)oo | p e 00y /y! 0<é
S K0
Logarithmic | 1(1)oco T K6V ]y 0<f<1
Zeta 1(1)o0 ¢(6) if1<0 | [yt -¢(6+1)]t 0< 6
¢(0+1)
. y+k—1 1 kk
Neg. B .| 0(1 ——F— | 0 ,0< k
eg. Binom (L)oo | p ( y )(M+k)y+k <m0<
Table: GAITD distributions implemented in VGAM. Here, x = [~ log(1 — 8)] .
Note:

GAITD Regression

o In VGAMextra logffMlink() and zetafflMlink() enable n; = log E(Y).
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GAITD Combo PMF
Identifiability

Avoiding degeneracy, the constraints on the parameter space needed for the PMF
to be identifiable are

O<g¢sfors=1,...,|Znl, 0 < ¢p,
0<tsfors=1,...,|Dppl, 0 < vy,
0<wsfors=1,...,|Appl 0 < wp, (3)
| Znpl [Dnpl [Anp|
¢p_1/1p+wp+ Z:lqﬁs_z:li/}s‘k Z:lws<1v ‘R\S|>0
s= 5= s=

@ The last condition ensures that R cannot be inflated,~deﬂated, altered or
truncated, and guarantees that dim(60,) > 1; and if R is the support of the
sample (i.e., set of all Y values) then the sample versions of the above must
hold too. Practically however, |R\S| > 1 to avoid a trivial regression.

@ w, = 0 is not permitted since otherwise A, could be subsumed into 7, and a
similar argument holds for ¢, = 0, ws = 0 and ¢s = 0.

GAITD Regression 21/64



LUK R TR VELE  GAITD Combo PMF

@ The ZAP can arise in two ways: either A, = {0} or A,, = {0}; and likewise

T, = {0} or Z,, = {0} for the ZIP. To ensure the parameters are identifiable
one can further enforce

[ Ap| # 1, Zp| #1 and [Dp| # 1. (4)

Note: altered values are effectively disconnected from the rest of the data because

they are only loosely coupled by a MLM. The remainder of the data are used to
estimate the parameters 6.

GAITD Regression 22 /64



U3 = = [
The GT-Expansion Method

GAITD regression can easily handle underdispersion, e.g.,

@ Multiply Y by 2 and truncate the odd values in between,

o Multiply Y by 3 and truncate all but multiples of 3 in between, etc.
Suggestion: transform to equidispersion or mild overdispersion.

It is a special case of the inverse location—scale transformation

Yoo = v+mY,, meZ", veEZ, (5)
where usually the multiplier m > 1 is small and v nonnegative.
Alternative example: Poisson f,, if v = 0 then m = y**/s)i is the moment
estimator. Could round this or choose an integer > m.

See the Example 1 on p.39.

The GTE method might make the Conway—Maxwell distribution less important.
Implementations of such include COMPoissonReg (Sellers et al. 2019) and mpcmp
(Fung et al. 2020) will face competition!

GAITD Regression 23 /64



AL NN MY Moments and CDF

Moments and CDF}
The kth moment is E[Y/] =

wp T Ffaa) dp X KRG wp T dNis(d)

ac A = deD
it + ) - ikt + Z akw[a-l + (6)
> fala) > i) > fs(d) a€App
ac Ap i€y deDp
> Forg— X durg o {BYEI - 3 e - > K fra)b.
i€Znp d€Dnpp teT ac{Ap, Anp}

The mean is returned as the fitted() values.
Let F. be the GAIT cumulative distribution function (CDF) and F, the CDF of
the parent distribution. Then F.(y) =

> Ia<y)fala) > I < y)f) > I(d < y)fs(d)
a€Ap i€, dEDp

ac A, i€y deD,
Ia<y)wpra) + S < e — > o1d < gy +
a€ App i€Tnp dEDpp

A qFr(y) — D Ut < y)fr(t) — > I(a < y)fr(a) p - (M
teT ac{Ap, App}

Returned by, e.g., pgaitdpois().
24 /64



Estimation

Fisher Scoring and IRLSY
For the full GAITD combo model, S = {A,, Anp, Zp, Znp, T,Dp, Dnp} and

L = Z I(y = a) - log [wp Aa(¥)] + Z I(y = a) - log wpa) + (8)
ae.Ap aG.Anp
|Znpl
Do Uy =i)-logAs(y)+ > Iy =i)-log Ap(y) +
s=1 i€elp
Dl
D Uy =d) - logAT(y)+ D> Iy =d)-log Ay (y) + 1y ¢ S) - log[TBx(y)],
s=1 deDp
[Anp| 1Znpl |Dhp|
T = 1_Wp_¢p+¢’p_zwu_z¢u+z'¢m (9)
u=1 u=1 u=1
A = T/Knx, (10)
AV(Y) = TB"\'(y)er’v Y € Inp, V:17~~,|Inp|a
Dply) = TBx(y)+¢pAly), yETI,

GAITD Regression 25/64



A;(y) = TBW(y)_¢v yEan7 v=17"‘7|anp‘y
A () = TB(y)*pra() y € Kp,
Aay) = fa0)/ D] falu) = fa(¥)/Kar vy €A,
ue Ap
Aly) = /> fw) = )/ Y € Ip,
vel,
Asly) = fly)/ D f(u) = f(y)/Ks, vy €Dy,
ueD,
Kp = 1-— > fr(a) = D (1), (11)
ac{Anp. Anp} teT
Ko = > fula), K. = > L), Ks= > f5(d),
ac A, i€el, deD,
ALY) = L)/ Ka = faly) KL /K2,
ALY = B0/ Ka =280 KL /KS — faly) KUK 4+ 2faly) (KL)? /K,
B‘H(Y) = ffr(Y)/K‘rr: y ¢ {-Anpv-AP!T}s
B = =0 LUK
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) 260K, BWKY | 260) (KG)*

B/(y) = K K2 K2 K
Then
8t _ AW B (y)
w5 A B.0)
| Znpl
iy, TELD) + 60 AL) L TELG
iezszny— - o) + Z =i 5
- BLY) — o AR(y) | ! TBL(d)
deZD I(y =d)- —Ap ) + Z I(y = ds) A j=m a8,
ot o] Is=v)-B.(y) & By
PP VI e Ry wr D B (R N Ol
Drl B.y) ¥ B.y) 1y ¢S)
; I(y=d5).?(y)_ ; I(y=d5)~A;(y) - v=1,...,|Znpl,

GAITD Regression 27 /64



oo - E e e

deDp

GAITD Regression 28 /64



822 // //
—E(Z= ) = - T
5 (%) EEI:A() 00, AOY = 32 7B o0} +
\Inp\ 2 \Inp\ 7 2 ’ 2
[T BL(ir)] 1 HOSNTA
; As(’s ; TB (s e |:Ko< BEZAP fa(a) (Ka) :| +
M A {TBL(d) — vp A5(d)}* — D {TB(d) — vp A (d)} +
deDp ( ) deDp
Dpl ’ 2 Dpl
[T B (ds)] 1
T 7= - T B (ds
s=1 A;(ds) ; ‘K( )+
N FO)\ . KL (KEN
Pr(y ¢ S) { 20 +Ec<fﬂ(y)> e (Kﬂ) }
ot Il [1(s = u) — Ba(i)][1(s = v) — Ba(i)] 22 B2(i)
E<a¢>ua¢>v> - X A7) Lamt
Dol g2(gy Dol g2y pry ¢ s)
2 A (dh) + ; Ap_(ds) + ™2 s etc., etc.

GAITD Regression 29 /64



Some notes:
Q It is readily shown that Pr(y ¢ S) =

Tl1-K S RO+ Y f(d)
i€{Lnp, Lp} de{Dpp, Dp}

[Anpl 1 Znpl Do
= lowp— > we— 3 A = DA - D AT (D) - > A (d).  (12)
s=1 s=1 ieZ, s=1 deD,

@ In general, the conditional expectations over R\S used is

Elg(Ya)] = X sfi(s)
Elg(Ya)|Yr ¢S] = s (13)

(- 50)

for some function g(Y), since S takes on the role of 7.
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Fisher Scoring and IRLS 1
The MLM and all the Etas

Recall the multinomial logit model (MLM) for probabilities p = (p1,...,pp)" has
g = multilogit(p1, ..., pp) given by

D
glps) = ns = Iog{ps/<1—2pu>}, s=1,....D, (14)

so that ppy1 =1 — p1 — -+ — pp (reference group). The inverse link (softmax) is
ps = ens/zi’:ll e where np41 = 0.

Fitted as a VGLM for 1-parameter distributions, n' =

<g7r(07r)7 IOg%v ga(0a), |Og%, £.(0.), |°g%7 g5(0s), lc%%’ AR |Og%’
Iog%, Iog%, |og%, |Og%> (15)
where g.(-) are the links, LA = | App|, LI = |Zpp|, LD = |Dyp| and
[Anp| [Znpl [Dipl
N=1l-wp—p—tp— 2 wu— > du— 2 Yu.
u=1 u=1 u=1
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Fisher Scoring and IRLS
Change of variablef

All parameters except for 8, 8., 0, and 85 are estimated by a MLM so need to
apply a change of variable from the given EIM to 5. Writing p = (wp, ¢p, w1, ...,
W] A h1, .- ¢|I,,p|)Tv then

% = (Diag(p)—pp") g%,
Ze(n) = (Diag(p)—pp") E(@;[);ﬁ) (Diag(p) —pp").

Efficiently compute the latter by exploiting structure in Diag(p) —pp":

M M
[IE("’)]U,V = pu pv {Iuv - Z ps (/us + Ivs) + Z P? Iss + 22 ps pt Ist} (16)
s=1 s=1

s<t

(where I is the (s, t) element of Zg(p))—it involves computing only a single
quadratic form p" Zg(p) p.
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Upper Tail Truncationf
For the GT—Poisson, one can handle truncation past U:

vglm(..., gaitdpoisson(truncate = 0:4, max.support = 20))

The support of Y is 5(1)20 but truncate = c(0:4, 21:Inf) is impractical. To
handle max.support = U use

oo N U—IA; oo ) N U—2>\£r
S othe(t) = A |1-e WZH s HE=1)f(t) = M |1-e WZF ,

t=U+1 t=0 t=U+1 t=0
ST = f(U), D) = £(U—1) = (V).
t=U+1 t=U+1
Some notes:
o Tractable formulas also exist for the Logarithmic(6) but not for Zeta(d) or
NB(u, k).

@ No need for min.support, of course.
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Inical Valuest
Initial Valuest

Initial values w,(,o) and w§°’ easily obtained from the MLEs (sample

proportions) assuming intercept-only, but shrinking them towards 0 is better.

Good starting values QSE,O) and ¢£°’ are difficult (confounded with the
scaled f;). A grid-search works well assumping that the ¢§°’ are equal.

Typically for a well-specified model, the Fisher scoring/IRLS algorithm
converges within 6-8 iterations, like ordinary GLMs.

The computations may be subject to numerical problems if the special values
are extremely remote in the support, e.g., for Pois(A = 10), /s > 303 on most
machines. If to machine precision f;(is) is evaluated as 0 then naive
programming will lead to 0/0 being computed. But possible to give warnings
and take corrective action against such possibilities.
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VGAM Software
VGAM Software

VGAM 1.1-9 on CRAN now has the following functions.

y Distribution R functions VGAM family function
GAITD-Pois—Pois—Pois—Pois [dpgrlgaitdpois () gaitdpoisson()
GAITD-Log—Log—Log-Log [dpgrlgaitdlog() gaitdlog()
GAITD—Zeta—Zeta—Zeta—Zeta | [dpqrlgaitdzeta() gaitdzeta()
GAITD-NB-NB-NB-NB [dpgrlgaitdnbinom() | gaitdnbinomial()

Table: Prefix “d” = density, “p” = CDF, “q” = inverse CDF, “r" = random deviates.
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f
‘ R function Comments
spikeplot (y) Spike-plots a data vector y.
Colours:
parent is pink,
runcated are turquoise hollow circles,
altered probabilities are avocado,
inflated probabilities are indigo,
deflated probabilities are deer.
plotdgaitd(fit) Spike-plots the PMF of fit.
dgaitdplot () Spike-plots the PMF, given f., Ay, Anp, Zp, Znp, T,
Dp, Dnp.
rootogram4 (fit) Rootograms (e.g., hanging, suspended, etc.) of fit.
goffset() For the GTE method: offset matrix.
Trunc (Range, mux = For the GTE method: returns a vector of values from
2) Range[1] to Range[2] that are not multiples of mux.

Table: Supporting functions for GAITD regression.

GAITD Regression
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> args(gaitdpoisson)

function (a.mix = NULL, i.mix = NULL, d.mix = NULL, a.mlm = NULL,
i.mlm = NULL, d.mlm = NULL, truncate = NULL, max.support = Inf,
zero = c("pobs", "pstr", "pdip"), eq.ap = TRUE, eq.ip = TRUE,
eq.dp = TRUE, parallel.a = FALSE, parallel.i = FALSE, parallel.d = FALSE,
llambda.p = "loglink", llambda.a = llambda.p, llambda.i = llambda.p,
llambda.d = llambda.p, type.fitted = c("mean", "lambdas",

"pobs.mlm", "pstr.mlm", "pdip.mlm", "pobs.mix", "pstr.mix",
"pdip.mix", "Pobs.mix", "Pstr.mix", "Pdip.mix", "nonspecial",
"Numer", "Denom.p", "sum.mlm.i", "sum.mix.i", "sum.mlm.d",

"sum.mix.d", "ptrunc.p", "cdf.max.s"), gpstr.mix = ppoints(7)/3,
gpstr.mlm = ppoints(7)/(3 + length(i.mlm)), imethod = 1,
mux.init = ¢(0.75, 0.5, 0.75), ilambda.p = NULL, ilambda.a = ilambda.p,
ilambda.i = ilambda.p, ilambda.d = ilambda.p, ipobs.mix = NULL,
ipstr.mix = NULL, ipdip.mix = NULL, ipobs.mlm = NULL, ipstr.mlm = NULL,
ipdip.mlm = NULL, byrow.aid = FALSE, ishrinkage = 0.95, probs.y = 0.35)
NULL

Notes:
e NULL = {}. The first arguments are for A,, Zp, Dp, Anp, Znp, Pnp, T.
@ eqg.ap, eq.ip, eq.dp are logical, e.g., A\x = A\, in the GAITD-Poisson.

@ parallel.ap, parallel.ip, parallel.dp refer to the MLM, e.g., all ws
are equal.
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Table: Argument type.fitted and fitted values for GAITD models. Many of the fitted
values are terms in the combo PMF (1). Not all options are applicable for any particular
fitted object. Warning: these details are subject to future change.

Argument Fitted value
"mean" 1, nx 1, Eqn. (6) with k = 1, the default
"pobs.mix" Pr(y € Ap), wp, n x 1
"pstr.mix" ¢p, nx1
"pdip.mix" Pp, N X 1
"pobs.mlm" Pr(y € Anp), ws, nX length(a.mlm)
"pstr.mlm" ¢s, nX length(i.mlm)
"pdip.mlm" s, nX length(d.mlm)
"ptrunc.p" >~ fx(t) including truncated values in the upper tail > max.support
teT
"cdf .max.s" F(max.support)
"Pobs.mix" Pr(y € Ap), wpfa(y)/ > fal(u), nX length(a.mix)
uE.Ap
"Pstr.mix" épf(y)/ > f(u), nx length(i.mix)
vel,
"Pdip.mix" Yo f5(y)/ > fs(u), nx length(d.mix)
uer
"sum.mix.i" Pr(y € Z,), nx length(i.mix), 4th line in (1)
"sum.mlm.i" Pr(y € Znp), nX length(i.mlm), 5th line in (1)
"Numer" Numerator, T, see (9), n x 1
"Denom" Denominator, used in (1), 1 — > fr(a) — > f(t), nx1
ac{Ap, Anp} teT

"nonspecial”  Pr(y ¢ S), see (12), n x 1
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Example 1. GTE Method and Heaping on Sleep Duration
Example 1. GTE Method and Heaping on Sleep Duration

The NZ cross-sectional data xs.nz in VGAMdata has a variable called sleep
giving the self-reported sleep hours to the question “How many hours do you
usually sleep each night?”

After removing the NAs and outliers (2.4%) then n = 10264 individuals.

Table: Usual sleep duration in a New Zealand cross-sectional data.

Hours 3 4 5 6 7 8 9 10 11 12
Frequency 16 125 443 1760 3076 3766 891 170 10 7
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> data("xs.nz", package = "VGAMdata")

> sxs.nz <- subset(xs.nz, !is.na(sleep)) # Remove missing values

> sleep.min <- 3 # Smallest value allowed

> sleep.max <- 12 # Largest walue allowed; Remove outliers

> sxs.nz <- subset(sxs.nz, sleep.min <= sleep & sleep <= sleep.max)
> with(sxs.nz, table(sleep))

sleep

3 4 5 6 7 8 9 10 11 12
16 125 443 1760 3076 3766 891 170 10 7
> with(sxs.nz, spikeplot(sleep))

See p.46. The data are left-skewed.

The data is strongly underdispersed with respect to the Poisson: the sample mean
and variance are 7.297 and 1.286.

Let y € {3,...,12} so we chose T = {0,1,2,13,14,...} to account for the
absence of such values from the data set.
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Firstly we search for the optimal multiplier m.

orgl <- with(sxs.nz, range(sleep)) # Original data range
m.max <- 8 # Try multipliers 1:m.max
aics <- logliks <- numeric(m.max)
allfits <- vector("list", m.max)
names (allfits) <- names(aics) <-
names (logliks) <- as.character(1:m.max)
for (mux in 1:m.max) { # seq(m.maz)
fit <- vglm(mux * sleep ~ 1, # trace = TRUE
gaitdpoisson(truncate = c(0:(sleep.min * mux - 1),
Trunc(orgl, mux)),
max.support = sleep.max * mux,
i.mlm = 8 * mux),
offset = rep(log(mux), nrow(sxs.nz)),
data = sxs.nz)
allfits[[mux]] <- fit
logliks[mux] <- logLik(fit)
aics[mux] <- AIC(fit)

}

The results are
> (mux.best <- as.vector(which.max(logliks))) # 5 is best

[1] 5
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> plot(logliks, col = "blue", type = "b", xlab = "Multiplier")
> abline(v = 5, h = logliks[5], col = 'orange', 1ty = "dashed")

The LHS of the plot is where the Poisson is used to fit underdispersed data, while
the RHS is where the transformed data is overdispersed.

o

~

o

-~ ~

y |

logliks
-18500 -18000 ~-17500 -17000 -16500 -16000

Multiplier

Figure: Log-likelhood ¢ versus multiplier m for several GAITD-Poisson fits according to
the GTE method.
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Incidentally, in contrast, the method of moments estimator for m is

> with(sxs.nz, mean(sleep) / var(sleep))

[1] 5.672

We select the best fit and then continue on the analysis.

> fitl <- allfits[[mux.best]]
> with(sxs.nz, spikeplot(mux.best * sleep, col = "red", lwd = 2,
xlab = "Expanded response", ylab = "",
xlim = c(mux.best * sleep.min,
mux.best * sleep.max)))
> plotdgaitd(fitl, new.plot = FALSE, offset.x = 0.5,
all.lwd = 2, col.p = "blue")

See p.46. The GAITD-Pois fit appears close to the observed proportions.

GAITD Regression 43 /64



> logLik(fitl)
[1] -15712
> coef(fitl, matrix = TRUE)

loglink(lambda.p) multilogitlink(pstr.mlm40)
(Intercept) 1.969 -3.292

> head(fitted(fitl, type = "pstr.mlm"), 2)
40

[1,] 0.1568

[2,] 0.1568

> KLD(fit1)

[1] 4.573
The fitEed model indicates that the amount of inflation at 8 is
about ¢rg) ~ 0.1568—almost 1/6 of the entire data set. The Kullback-Leibler

divergence is 4.573 relative to an ordinary Poisson.
With regard to the mean sleep duration, we have
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> head(fitted(fit1), 1) / mux.best

[,1]
2 7.297

> exp(confint (fit1) [1, 1)
2.5 % 97.5 %

7.139 7.194

That is, the overall GAITD mean is estimated by 7.297 hours whereas an
approximate 95% confidence interval for ji,, the mean sleep of the Poisson parent
parameter, is [7.139,7.194] hours.
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Figure: (a) Spikeplot of sleep in xs.nz from VGAMdata; (b) GTE method with
GAITD-Poisson fit is overlaid in blue—the truncated values are turquoise hollow points.
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Example 2. Smoking Duration
Examples
Example 2. Smoking Duration

Use xs.nz in VGAMdata, a NZ prospective observational study in the 1990s.
Have n = 10,529 as an approximate random sample of the working population.
Let Y = smoking duration (years).

xs.nz <- transform(xs.nz, roundsmokeyears = round(smokeyears))

smoke.df <- subset(xs.nz, roundsmokeyears > 0 &
!is.na(smokeyears) &
!is.na(ethnicity) &
lis.na(sex))

smoke.df <- transform(smoke.df, smokeyears = roundsmokeyears)

Then n = 5492. Let's spikeplot the data.

mylwd <- 1.5
myxlab <- "Smoking duration (years)"
with(xs.nz, spikeplot(smokeyears, lwd = mylwd, las = 1, xlab = myxlab))
put.caption("(a)", w.x = c(0.5, 0.5))
myylim <- c(0, 0.11)
with(smoke.df, spikeplot(smokeyears, lwd = mylwd, las = 1,
xlab = myxlab, ylim = myylim))
put.caption("(b)", w.x = c(0.5, 0.5))
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Figure: Spikeplot of smokeyears from VGAMdata. (a) From xs.nz; (b) From the subset
smoke.df.

The most pronounced heaped values include 5, 10, 20, 30, 40, 50, 60, as well

as 12, 25, 35. A careful examination also suggests that 9, 11, 13, 19, 21, 29, 31
are seeped.
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Let’s fit an intercept-only GAITD regression. Because the nonsmokers are such a
large group it is necessary to model smoke.df only—we run out of baseline
reserve probability. We choose

7, = {5,10,20,30,40,50,60}, A, = {2,15,25,35,45},
Top {1,8,12,18}, D, = {9,11,13,19,21,29,31}, T = {0}.

We use a NB parent to handle overdispersion and we relax the assumptions that
the altered and inflated distributions are equal to the parent.

i.mix <- c(5, 10, 20, 30, 40, 50, 60)
a.mix <- c(2, 15, 25, 35, 45)
i.mlm <- c(1, 8, 12, 18)
d.mix <- c(9, 11, 13, 19, 21, 29, 31)
tvec <- 0
fitl.sy <-

vglm(smokeyears ~ 1,

gaitdnbinomial(i.mix = i.mix, i.mlm = i.mlm, a.mix = a.mix,

eq.dp = FALSE, # This line is good
eq.ip = FALSE, eq.ap = FALSE, # This line <s good
d.mix = d.mix, truncate = tvec),

crit = "coef", trace = FALSE, data = smoke.df)
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The acceptable number of IRLS iterations needed for convergence is suggestive
that the model fits the data reasonably well. In fact, changing to eq.dp = TRUE
decreases the number of iterations to a reasonable number.

The following plot shows a good correspondence between the model and data. To
conserve the baseline reserve probability, 7, was used to model the layer of largest
spikes while A, for the inner layer.

mylwd <- 1.5
with(smoke.df, spikeplot(smokeyears, las = 1, lwd = mylwd,
xlim = c(0, 59), xlab = myxlab, ylim = myylim))
plotdgaitd(fitl.sy, new.plot = FALSE, offset.x = 0.33,
all.lwd = mylwd, deflation = TRUE)

GAITD Regression 50 /64



0.10

0.08

0.06

Proportion

0.04

0.02

H“H ”H‘;|:I:|||||||'|'III‘|||. | |

0 10 20 30 40 50 60

0.00 4 ©

Smoking duration (years)

Figure: How the GAITD regression and smoke.df compare for smokeyears.

GAITD Regression 51/64



Examples

> t(coef(fitl.sy, matrix = TRUE))

(Intercept)
loglink(munb.p) 2.7806
loglink(size.p) 0.5920
multilogitlink(pobs.mix) -0.9801
loglink(munb.a) 2.9109
loglink(size.a) 0.7901
multilogitlink(pstr.mix) -0.6258
loglink(munb.i) 3.1248
loglink(size.i) 1.4627
multilogitlink(pdip.mix) -2.1238
loglink(munb.d) 2.7571
loglink(size.d) 0.6099
multilogitlink(pstr.mlm1) -3.1748
multilogitlink(pstr.mlm8) -4.5433
multilogitlink(pstr.mlm12) -3.7095
multilogitlink(pstr.mlmi8) -4.6729
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And some more output:

> head(fitted(fitl.sy, type.fitted = "pobs.mix"), 1)

[,11
[1,] 0.1773

> head(fitted(fitl.sy, type.fitted = "Pobs.mix"), 1)

2 15 25 35 45
[1,] 0.04138 0.06905 0.03979 0.01894 0.008189

> head(fitted(fitl.sy, type.fitted = "pstr.mix"), 1)

[,11
[1,] 0.2528

> head(fitted(fitl.sy, type.fitted = "Pstr.mix"), 1)

10 20 30 40 50 60
[1,] 0.0256 0.06338 0.08224 0.04987 0.02156 0.007689 0.002422

> #head(fitted(fitl.sy, type.fitted = "pdip.miz"), 1)
> #head(fitted(fitl.sy, type.fitted = "Pdip.miz"), 1)
> head(fitted(fitl.sy, type.fitted = "nonspecial), 1)

[,1]
[1,] 0.2957
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> head(cbind(smoke.df$smokeyears, fitted(fitl.sy, type.fitted = "munbs")))

nunb.p munb.a munb.i munb.d
[1,] 17 16.13 18.37 22.75 15.75
[2,] 12 16.13 18.37 22.75 15.75
[3,] 8 16.13 18.37 22.75 15.75
[4,] 3 16.13 18.37 22.75 15.75
[5,] 17 16.13 18.37 22.75 15.75
[6,] 9 16.13 18.37 22.75 15.75

> #(pdip.hat <- c(fitted(fitl.sy, type.fitted = "pdip.miz"))[1])
> #(pns.hat <- c(mean(fitted(fitl.sy, type.fitted = "nonspecial”))))

> (pheapseep <- Pheapseep(fitl.sy)) # \Xi

[1] 0.4108

That is, for the subset of current or ex-smokers, we can say that
approximately 41.1% of the data can be said to be heaped.
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> rootogram4(fitl.sy, max = 100, main = "", xlim = c(0, 60),
style = "hanging", col = "red", fill = "lightgreen")

sqrt(Frequency)

smokeyears

Figure: Hanging rootogram of the intercept-only GAITD regression fitl.sy.

The response residuals have no systematic lack-of-fit. Conclusion: the model is an
acceptable fit.
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Adding Covariatesf

How do things change when adjusting for sex and ethnicity? Here, we set eq.dp
= TRUE because the estimates look similar and for numerical stability.

> fit2.sy <-
vglm(smokeyears ~ sex + ethnicity,
gaitdnbinomial (i.mix = i.mix,
eq.dp = FALSE
eq.ip = FALSE, eq.ap = FALSE, # This line is good
d.mix = d.mix, truncate = tvec),
etastart = predict(fitl.sy), # Improved initial values
crit = "coef", trace = FALSE, data = smoke.df)

i.mlm = i.mlm, a.mix = a.mix,

GAITD Regression
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Some output:

> round(t(coef(fit2.sy, matrix = TRUE)), 3)

loglink (munb.p)
loglink(size.p)
multilogitlink(pobs.mix)
loglink(munb.a)
loglink(size.a)
multilogitlink(pstr.mix)
loglink(munb.i)
loglink(size.i)
multilogitlink(pdip.mix)
loglink (munb.d)
loglink(size.d)
multilogitlink(pstr.mlm1)
multilogitlink(pstr.mlm8)
multilogitlink(pstr.mlmi2)
multilogitlink(pstr.mlmi8)

The data suggest the following:
@ Europeans smoke longer than the other three ethnicities. In fact, there
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appears little difference between the three.

@ Males smoke longer in general. However, there does not seem to be a
difference between males and females in the inflated values (spikes).
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Closing Comments

Advicet

o
(2]

Firstly spikeplot the response and study it well!
Select the special values carefully, e.g., don't inflate seeped values! If unsure,
alter them.

Don't overfit the model... will it generalize? For example, Warton (2005)
concluded that it was rarely necessary for O-inflation when NB i = 0.
Amateurs inflate too much.

Monitor convergence; set trace = TRUE. Be wary if it takes more than 10
iterations to convergence.

Fit an intercept-only model first and then add covariates. Use simpler models
for initial values, e.g., etastart.

If necessary, input better initial values than the self-starting ones.
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Some Future Work
Some Future Work

@ Develop GAITD regression for continuous distributions, e.g., normal and
gamma. Called a concrete (continuous—discrete) distribution.

4_
2 37
2
8 27
l_
0_
T T T T T
1.6 17 18 1.9 2.0
y

Figure: Hypothetical data from a GAITD normal distribution.
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(0[5 @ S8 Summary and Concluding Remarks

Summary and Concluding Remarks

@ The GAITD combo is easy-to-understand and offers much flexibility.
Potentially useful for

> spiked and dipped data,

> truncated data,

» underdispersed, equidispersed and overdispersed data,
> heaped and seeped data (measurement error).

Integrated and with parametric and nonparametric subcomponents.
@ Software is available.
@ Q: could the GAITD-NB become the Swiss army knife of count distributions?
@ Full details in Yee and Ma (2024).
@ Suggestions with real-life problems are welcome.

@ There is still a lot more work to be done. ..
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Closing Comments

Thanks for your attention!
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