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Saddlepoint approximation

Consider a 0-dependent random variable Y whose PDF/PMF | f(y; )| is unknown.

[ Known MGF: My (t;0) = E(e') }

Saddlepoint approximation transforms
the cumulant generating function (CGF)

| Ky (t;0) = log My (t;0) |

Fy: 9) = 2eKy(H0)—ty)
Fyi0) = serarrin)

Ky(t:0) = y

, where
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Saddlepoint approximation

Consider a 0-dependent random variable Y whose PDF/PMF | f(y;0)|is unknown.

[ Known MGF: My (t; 9)} To estimate 6, using y

Saddlepoint approximation transforms
the cumulant generating function (CGF) L(6;y); Not possible

| Ky(t;0) = log My (£; 0) |

f(y;g) _ exp(Ky(£0)—ty)

— Jdet(2nK{/(£:6))’

Ky(t0) = y

where

[ L(6;y) = f(y;0) }“saddlepoint likelihood”
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Saddlepoint likelihood

To estimate 6, we refer to

~ n n 1 ~
log L(0ly) = Ky (£ 0) — fy — g l0g(2) —  log det {K{/(£:0)}.

where £ = £(6; y) is the solution of the saddlepoint equation, i.e., K|, (t;60) = y.

Ky

K [
KE log L(0|y) Optimisation

Y

Y

OMLE

4/16



Saddlepoint likelihood

To estimate 6, we refer to

~ n n 1 ~
log L(0ly) = Ky (£ 0) — fy — g l0g(2) —  log det {K{/(£:0)}.

where £ = £(6; y) is the solution of the saddlepoint equation, i.e., K|, (t;60) = y.
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What if Y = YV X;
X;i ~ Multinomial(n, 7;)
N = Binomial(ny, p1) + Binomial(nz, p2) + Binomial(ns, p3)
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Consider a random variable Y = 27:1 X;, where X;'s are i.i.d copies of X.

If we know the CGF of X, we can exploit these operations to obtain the CGF of Y. )

Essentially, we transform {Kx(t; ), Ki(t;¢), Kx(t: )} to {Ky(t;0), K, (t;0),
Ky(t:6)}
The “distributional parameter”, ¢ is modelled by 6(the “model parameter”).

As a function, ¢ = h(0) - “adaptor”
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Building a model CGF -Multivariate Poisson r.v.

We observe vector Y = (Yi,..., Yy) which follow a multivariate Poisson distribution such that
Yi=Xi+ 2
Yo=Xo+ 2o

(1)
Yg = Xg + 4.

Xi's and Zp are unobservable and independent Poisson random variables with distributional
parameters « and 3.

Goal: Estimate 6 = («, ) using the observations - Y. J

® We can represent (1) as Y = X + Z, where X = (Xi,..., Xy) is a vector of i.i.d Poisson
random variables and Z is a vector with d repeated components of Zj.

® Structurally, Y = X + AZy, A: a column vector of ones.
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Building a model CGF -Multivariate Poisson r.v.

We observe vector Y = (Yi,..., Yy) which follow a multivariate Poisson distribution such that
Yi=X1+ 2 X1 1
Ya=Xo + 2 _ | X 1
' Xd 1
Yg = Xg + 4.

Xi's and Zp are unobservable and independent Poisson random variables with distributional
parameters « and 3.

Goal: Estimate 6 = («, ) using the observations - Y. J

® We can represent (1) as Y = X + Z, where X = (Xi,..., Xy) is a vector of i.i.d Poisson
random variables and Z is a vector with d repeated components of Zj.

® Structurally, Y = X + AZy, A: a column vector of ones.
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Building a model CGF -Multivariate Poisson r.v.

Goal: Estimate 0 = («, 8) using Y = (Y1,..., Yq). ]
{Y=X+Z} ={Y =X+ AZ};, X a vector of i.i.d Poisson(a) and Zy ~ Poisson([)

# CGF of X(i.i.d Poisson random variable):
K_X <- PoissonModelCGF(lambda = adaptorUsingIndices(indices = 1))
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Building a model CGF -Multivariate Poisson r.v.

Goal: Estimate 0 = («, 8) using Y = (Y1,..., Yq). ]
{Y=X+Z} ={Y =X+ AZ};, X a vector of i.i.d Poisson(a) and Zy ~ Poisson([)

# CGF of X(i.i.d Poisson random variable):
K_X <- PoissonModelCGF(lambda = adaptorUsingIndices(indices = 1))

# CGF of Z = A*Z_0O

K_Z0 <- PoissonModelCGF(lambda = adaptorUsingIndices(indices = 2))
A <- matrix(1, nrow = d)

K_Z <- linearlyMappedCGF (baseCGF = K_ZO, matrix_A = A)
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Building a model CGF -Multivariate Poisson r.v.

Goal: Estimate 0 = («, 8) using Y = (Y1,..., Yq). ]
{Y=X+Z} ={Y =X+ AZ};, X a vector of i.i.d Poisson(a) and Zy ~ Poisson([)

# CGF of X(i.i.d Poisson random variable):
K_X <- PoissonModelCGF(lambda = adaptorUsingIndices(indices = 1))

# CGF of Z = A*Z_0O

K_Z0 <- PoissonModelCGF(lambda = adaptorUsingIndices(indices = 2))
A <- matrix(1, nrow = d)

K_Z <- linearlyMappedCGF (baseCGF = K_ZO, matrix_A = A)

# The CGF of Y
K_Y <- sumOfIndependentCGF(K_X, K_Z)

11/16



find.saddlepoint.MLE() for 6 = («, )

{Y=X+2Z} ={Y =X+ AZ}; X a vector of i.i.d Poisson(a)) and Zy ~ Poisson(53)

find.saddlepoint.MLE(observed.data = Y, model.cgf = K_Y,
starting.theta = c(1,1), std.error = TRUE)

K_X <- PoissonModelCGF(lambda = adaptorUsingIndices(indices = 1))

K_Z0O <- PoissonModelCGF(lambda = adaptorUsingIndices(indices = 2))

K_Z <- linearlyMappedCGF (baseCGF = K_Z0O, matrix_A = matrix(l, nrow = d))
K_Y <- sumOfIndependentCGF(K_X, K_Z)
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Capture-recapture models with latent identities

Y = AX

® | atent identities in such models occur in such a way that X can be modelled but is not
observable, and Y cannot be modelled but is observable.

Example: Two-source (Multimark) model J

0: Not captured
L: Captured from the left
R: Captured from the right

( 000L )} Observable histories

® There is no way of matching these observed histories to the animals that produced them.
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Capture-recapture models with latent identities

Y = AX; X ~ Multinomial(N,x); 0 = (N, p, pr)

h <- function(theta) pi
grad.h <- function(theta) {...}
A<- ...
K.X <- MultinomialModelCGF(n = adaptorUsingIndices(indices = 1),

prob.vec = adaptorUsingRFunctions(h = h, grad_h = grad.h))
K.Y <- linearlyMappedCGF (baseCGF = K.X, matrix_A = A)
find.saddlepoint.MLE(observed.data = Y, model.cgf = K.Y,

starting.theta = ...)
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® This framework allows us to easily create and compute MGFs/CGFs and their derivatives.

® We exploit “CGF-compatible” operations as our building blocks: linear mapping
operation, sum of independent r.vs operation, operations involving compound
distributions, e.t.c

® For estimation using the saddlepoint likelihood, the framework provides a streamlined and
intuitive way of building CGFs. (The knowledge of the actual CGF of a observable
random variable is unnecessary to obtain estimates. We can use the framework to directly
build and utilise them.)

® The framework is extensible and allows for the addition of new operations and CGFs.
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A different approach - MV Poisson problem

We observe vector Y = (Yi,..., Yy) which follow a multivariate Poisson distribution such that
Yi=X1+ 2 X1 1
' Xd 1
Yy = Xg + 4.
Yy 1001 §1
2l =(0 10 1]
3
Y3 0011 Z

CGF of Y will involve a “linear mapping” operation of a “concatenated” CGF.
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