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Full model 
 

eXy   ,   

 

where  

 

y   = response vector of length n   

  = fixed effects vector   

X  = design matrix, and  

 2,0~ enIVNe    =  residual error vector 
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Null model 
 

ey n  1
 ,    

 

where  

 

n1   = a vector of n ones 

   = intercept  

 2
00,0~ enIVNe    =  residual error vector  
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The standard procedure 
 

Error sum of squares for full model: 

yPySS Tfull
error     where     TT

n XXXXIP 
   

 

Error sum of squares for null model: 

yPySS Tnull
error      where    

T
nnn nIP 111   
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Coefficient of determination (R2) 

 

null
error

full
error

SS
SSR 12

 

 

Adjusted coefficient of determination ( 2
adjR ) 

 

 
  null

error

full
error

adj SSpn
SSnR





112      where      Xrankp   
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Coefficient of determination (R2) 
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Adjusted coefficient of determination ( 2
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What does R2 estimate? 

 

 
 0

0,
V
VV








   

,  

 

where  

 

 V  = total variance implied by the variance-covariance structure V   

 

     VVVV   00,   

        = variance explained by effects added in full model relative to null model 
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For LM 

  2
00 eV     ,  

  2
eV   , and  

  22
00, eeVV    and hence 
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Extensions of R2 

 

Generalized linear models (GLM): Zhang (2017) 

 
Linear mixed models (LMM): Edwards et al. (2008), Liu et al. (2008),  

                                Demidenko et al. (2012), Schreck & Wiesenfarth (2022) 

 
Generalized linear mixed models (GLMM): Nagakawa and Schielzeth (2013),  

                                Jaeger et al. (2017, 2018), Nakagawa et al. (2017),  

                                Stoffel et al. (2017), Ives (2019), Piepho (2019), Zhang (2022) 

 

 No time to review in detail 

 None of these seemed general enough & easy to communicate
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> 6900 citations and counting on SCOPUS ! 

> Two problems:  

    (i) covariance among observations ignored  

    (ii) bias in estimate of variance explained by fixed effects
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Data vector  

 

 Tnyyyy ,...,, 21  with  

 

   TnyE  ,...,, 21  and     ijvVy var  

 
 
Semivariance  
 

      ijjjiijiji vvvyyyysv 
2
1var

2
1,    

                                                                             (Webster & Oliver, 2007)
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Average semivariance (ASV) 
 

        VP
n

yysv
nn

V
n

i

n

ij
ji

ASV trace
1

1,
1

2 1

1 1 



  



   

 

where 
T
nnn nIP 111  

 

 

This is a discrete version of the double integral given in Webster & Oliver (2007), 

which integrates the semivariance over a defined spatial area: 
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(Webster & Oliver, 2007, Geostatistics for environmental scientists. Wiley, p.61) 
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 ASV only captures the total variance in the random-effects part. 

 
 Also need to capture the fixed-effects part  
 

To do so, we here use the expected value of  2
2
1

ji yy  , which may be denoted 

as expected semi-squared difference: 
 
 

        jijijiji yysvyyssbyyEyyessd ,,
2
1, 2    

 
where 
 

   2
2
1, jiji yyssb    is the semi-squared bias 
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Average semi-squared bias (ASSB): 
 

        Pn
yyssb

nn
T

n

i

n

ij
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Average expected semi-squared difference (AESSD): 
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The average expected semi-squared difference,   ,VAESSD , can be related 
to the sample variance 
 

yPy
n

s T
y 1

12


  

 
 
It follows from results on quadratic forms that 
 
 
    ,2 VsE AESSD
y     
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The candidate model can be written as 

 

eXy     

 

where  2,0~ eIVNe  . The error variance can be unbiasedly estimated by  

 

yPy
pn

T
e 




1ˆ 2
 ,   

 

where  Xrankp  , and   TT XXXXIP 
 .  
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Average expected semi-squared difference: 
 

     22 , e
ASVASSB

e
AESSD IXXIV     

 
 
The proposed coefficient of determination: 
 

 
   2 e

ASVASSB

ASSB

IX
X




 


  
 
 
We find that   22

ee
ASV I   , which is estimated by 

 
 

  22 ˆˆ
ee

ASV
LM I    
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Naïve estimator of   XASSB
 : 

 

 
ˆˆ

1
1 XPX
n

TT


       with        yXXX TT 

̂  

 

     
ˆvar

1
1ˆˆ

1
1 XPXtrace

n
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n
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
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

  

 

 unbiased estimator: 

 

     
ˆvar

1
1ˆˆ

1
1ˆ XPXtrace
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Putting it all together: 
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i.e., the estimator of the residual variance under the null model  
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which is identical with the adjusted R2 for LM (Draper & Smith, 1998)  
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A LMM can be written as 

 

eZuXy     

 

with   Gu var ,   Re var  and   0,cov eu , such that 

 

  RZGZVy T var  

 

The fixed effects are estimated by  

 

  yVXXVX TT 11ˆ   
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Average expected semi-squared difference,   ,VAESSD :  

 

     VXXV ASVASSBAESSD  ,  

 

 
Coefficient of determination: 
 

 
   VX

X
ASVASSB

ASSB




 

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The unbiased estimator of   XASSB  is 

 

     
ˆvar

1
1ˆˆ

1
1ˆ XPXtrace

n
XPX

n
X TTTASSB

LMM 



   

  

where     XVX T 1ˆvar  .  

 

 

Need to replace V  by V̂ , its residual maximum likelihood (REML) estimator 

 consistent 
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Variance explained jointly by random effects u  and residual e : 

 

   VPtrace
n

VASV
LMM

ˆ
1

1ˆ



  

 

Consistent estimator of the coefficient of determination for LMM: 

 

 
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Coefficient of determination for the variance explained by random effects: 

 

 
   VX

ZGZ
ASVASSB

TASV

u 





  

 

This may be motivated by the partition 

 

       RZGZVPtrace
n

V ASVTASVASV   



1

1
 

 

The estimator of  TASV ZGZ  is simply  TASV ZGZ ˆ .  
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The variance explained by both fixed and random effects: 

 

   
   VX
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Also,  VASV  can be partitioned according to the component random effects: 

 

2211 uZuZZu    

 

with   11var Gu  ,   22var Gu   and   0,cov 21 uu     
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A GLMM has linear predictor 

 

fZuX     

 

  fRf var  

 

The residual random effect f  associated with the n  units in the linear predictor is 

optional and may be added to account for overdispersion.  

 



Extension to generalized linear mixed models (GLMM) 

Biometrics in the Bay of Islands, Waitangi, 28 November 2023                    Hans-Peter Piepho 30 

 

The observed data have conditional expectation 

 

    1 gyE   

 

where  .g  is the link function. 
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The variance takes the general form 

 

  2/12/1var  RAAy    

 

A  = a diagonal matrix with evaluations of the variance function  iiy |var   

         on the diagonal  

R  = a correlation matrix or a covariance matrix if overdispersion needs to be  

        modelled (Wolfinger & O'Connell, 1993; Stroup, 2015)  
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Challenge with GLMMs  
 

 The random model terms occur both on the linear predictor scale (via the 

random effects Zu ) and on the observed scale (via the conditional 

distribution of y  for given value of the linear predictor  ) 

  

 In defining a coefficient of determination, a choice needs to be made as to the 

scale on which variance is to be assessed  
 

 In either case, the variance occurring on the one scale needs to be projected 

onto the other scale in order to have a common scale on which to define the 

coefficient of determination  I am projecting onto the linear predictor scale 
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Extending the linear predictor for the projection: 

 

hfZuXh    

 

  hRh var  

 

h  = auxiliary residual term to take up the projection of the residual from the  

        original scale (Nakagawa & Schielzeth, 2013) 

 

hf
T

h RRZGZV     
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Use the Taylor-series expansion approach of Foulley et al. (1987) to project the 

residual variance from the original scale onto h  on the linear predictor scale: 

 
12/12/11   DRAADRh  

 

where     1gdiagD   

 

 Particularly easy to compute when model is fitted using pseudo-likelihood  

     (Wolfinger & O'Connell, 1993) 
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Table: Values of diagonal elements of D  and A  for a few examples (m =  

            sample size of binomial distribution). 

 

Link function D  Distribution  A  

Logit   1m  Binomial   1m  

Probit§  m  Binomial   1m  

Complementary log-log    expexp m  Binomial   1m  

Log   Poisson   

§  .  is the probability density function of the standard normal distribution 
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Exact results for the binary distribution (binomial distribution with 1m ): 

 

Link function      Implied c.d.f.       Variance of hi 

Logit standard logistic   3/var 2ih  

Probit standard normal   1var ih  

Complementary log-log standard extreme value   6/var 2ih  
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 Beetle larvae sampled from 12 populations (Nakagawa and Schielzeth, 2013) 

 Within each population, larvae obtained from two microhabitats 

 Larvae distinguished as male and female 

 Sexed pupae were reared in containers, each holding eight animals  

 

There are three responses:  

 

(i) body length (Gaussian distribution)  

(ii) frequency of two male colour morphs (binary distribution) 

(iii) the number of eggs laid by each female (Poisson distribution)  
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Linear predictor 
 

Fixed effects:  habitat 

Random effects:  population and container  

 

Distribution, link function and unit variance 
 

Morph frequency:  

 binomial, logit link,   3/var 2ih  and   0,cov ji hh   ji   

Egg counts: 

 Poisson, log link,   1var  iih   and   0,cov ji hh   ji   
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Beitler & Landis (1985)  

 clinical trial with two treatments (control versus intervention)  

 eight clinics, 273 patients 

 clinics are regarded as a random sample from a larger target population 

 Linear predictor:  

fixed effect: treatment 

random effects: clinic + clinic.treatment  

 binomial count iy  of the number of patients responding favourably out of the 

total number of patients im  allocated to a treatment in a given clinic  

 logit, probit and complementary log-log link 

 Gaussian quadrature 

 



Example 2 

Biometrics in the Bay of Islands, Waitangi, 28 November 2023                    Hans-Peter Piepho 41 

 

Patient-level analysis 
 

The rows of the relevant vector and matrices ( , X , Z , hR , hV ) need to be 

expanded from the binomial model for grouped data  ii my ,  with 16 clinic  

treatment combinations, to represent the binary patient-level response ijy .  

 
 
 binary inflation
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Gilmour et al. (1987)  

 deformities in the feet of 2,513 lambs  

 scored in three ordered categories, denoted as K1, K2 and K3 

 lambs represent 34 sires 

 Linear predictor: 

  random effect: sire  

  fixed effects: four contrasts denoted as YR (year), B1, B2 and B3 (breeds) 

 binomial model with a probit link, merging either K2 & K3 or K1 & K2 

 multinomial, cumulative probits (threshold model) 
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Single covariate 
 

Simulation scenarios for random-coefficient regression as described in Xu (2003).  

 

  ijijiiij ezuuy  11100     

 

 injni ,...,1;,...,1   with  2
00 ,0~ Nui ,  2

11 ,0~ Nui  and  2,0~ Neij   

 

The covariate values ijz1  were simulated once from a standard normal distribution 

and this one set of values used in all 1,000 simulation runs for a scenario.  

 
 



Simulation 
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Simulation 
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Two covariates 
 

    ijijiijiiij ezuzuuy  22211100     
 
where  2

22 ,0~ Nui  
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Summary 
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 Average semivariance (ASV) is a natural metric for total variance 

 Average semi-squared bias (ASSB) is a natural extension of ASV that also 

includes fixed effects 

 ASV and ASSB account for covariance among observations 

 It is important to remove bias in the estimation of ASSB 

 A coefficient of determination based on ASSB coincides with the adjusted R2 for 

LM 

 Extension to LMM and GLMM is straightforward 

 In GLMM, total variance is assessed on the linear predictor scale 

 Simulation shows that estimates of variance explained are accurate 
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Thanks! 
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