Biodiversity Modelling in the Southern Ocean using sparse data

Background

• Sparse biological data

Background

Particle Tracking

Ecological application

Conclusion

Background

• Sparse biological data

 Remotely sensed and modelled data are: more easily accessible, cheaper and have broad coverage

Ecoregionalisation

Ecoregionalisation

Problem with current global carbon-models (e.g. Lutz et al. 2007): resolution too coarse & no regional currents

Background

Particle Tracking

Ecological application

Conclusion

biological data

- 32 transects, ~3000 images, 170-1550m depth
- transects are split by environmental cells
- %-cover for each species
 (ordinal, but treated as numeric)
- basic functional traits for each species

Results from a weighted multiple linear regression

Summary

- Predicting seafloor food availability is possible
 - Needs regional oceanographic models
 - Needs surface productivity
 - sediment cores for validation
- Can be directly related to biological measures and functional groups

Thanks for listening

Question-time 🙂

Thanks to:

Nicole Hill John McKinlay Craig Johnson Piers Dunstan

Mike Sumner Simon Wotherspoon Ben Raymond Ben Galton-Fenzi Marc Eleaume Alix Post Leanne Armand

```
Call:
Im(formula = cover_SF ~ depth + settle + Iflux, data = Im.data, weights = N)
```

Weighted Residuals:

Min 1Q Median 3Q Max -336.69 -87.05 12.18 54.61 332.20

Coefficients:

	Estimate Std.	Error	t value	Pr(> t)
(Intercept)	50.559606	14.699410	3.440	0.00184 **
depth	0.055260	0.007826	7.061	1.11e-07 ***
settle	-0.005998	0.002476	-2.422	0.02215 *
lflux	5.692220	1.988587	2.862	0.00787 **

```
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Residual standard error: 147.6 on 28 degrees of freedom Multiple R-squared: 0.6762, Adjusted R-squared: 0.6415 F-statistic: 19.49 on 3 and 28 DF, p-value: 5.045e-07

- Sinkmodel (Phytoplankton composition and sinking speed)
 - Beans et al. 2008
 - Laurenceau et al. 2015
- Settlingmodel (settling equation and particle size/density)
 - Jenkins&Bombosch 1995
 - McCave&Swift 1976
 - Ierland&Peperzak 1984
 - Beaulieu 2003

$$p_0 p' = p_i C W_d \cos \theta \left(1 - \frac{U^2}{U_c^2} \right) He \left(1 - \frac{U^2}{U_c^2} \right)$$

 $p_0 = density of seawater (1030 kg/m^3),$

 p_i = density of the settling particles (held constant at 1100kg/m³),

C = concentration of particles/cell,

 W_d = velocity at which particles settle onto the seafloor (one of the four sinking velocities we've chosen),

 U^2 = velocity given from ROMS for each cell.

 U_c^2 = critical plume velocity and calculated by the following expression:

$$U_c^2 = \frac{0.05(p_0 - p_i)g2r_c}{p_0 K}$$

g=9.81m/s², and the drag coefficient K= $2.5*10^{-3}$.

The effective radius of settling particles, which is the radius of a sphere having the same volume as the idealised disc shaped diatom is calculated through:

$$r_c = \left(\frac{3}{2}\varepsilon\right)^{\frac{1}{3}}r$$

Where r is the radius of the particles and E is assumed to be 1 for our modelling purposes.

