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Regolith Depth

Regolith is a layer from
the earth’s surface down
to unweathered bedrock at
depth.

[Wilford and Thomas (2013)]
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Depth Measurements in Queensland

17,672 Non−censored Measurements
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Environmental and Ecological Variables

We consider 17 variables
associated with climate,
relief, parent material, and
time (Jenny, 1941).
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Modelling and Mapping Regolith Depth

• We propose a Bayesian hierarchically spatial model for large
and censored spatial data.

• This model can account for the uncertainty of right-censored
measurements.

• Also, our model can includes environmental and ecological
raster data as covariates to explain depth variation.

• In addition, we use stochastic search variable selections
(SSVS) algorithms to improve model selection and to perform
model averaging to enhance prediction.

• Lastly, we apply this model to fit and predict regolith depth in
Queensland.
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Hierarchically Spatial Models

• Let {z(sn)}Nn=1 be a set of measurements at locations
s1, . . . , sN .

• The sample consist of nJ non-censored and nK censored
measurements. That is, {z(sj); j ∈ J} and {z(sk); k ∈ K}
with nJ + nK = N.

• Data model for non-censored measurements z(sj):

z(sj) ∼ N(y(sj), σ
2
J),

where y(sj) and σ2J denote the true process at location sj and
the measurement error variance of the non-censored samples.

• Data model for right censored measurements z(sk):

z(sk) ∼ TN(y(sk), σ2K )[−∞,y(sk )],

where y(sk) and σ2K denote the true process at location sk
and the measurement error variance of the censored samples.
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Hierarchically Spatial Models (Cont.)

• Process model for Y:

Y (sn) = h(X (sn))′β + η(sn),

I h(X (sn)) = (h1(X (sn)), . . . , hq(X (sn)))′ is a vector of
functions of p spatial covariates X (sn).

I β is a q × 1 coefficient vector corresponding to h(X (sn)).

I η(sn) is a mean-zero spatial Gaussian process with a valid
covariance function CY (sn, sn′).

I Here, we assume CY (sn, sn′) = σ2
Y ρ(sn, sn′ ;θ), where σ2

Y is a
constant variance and ρ(sn, sn′ ;θ) is a correlation function
with a set of parameters θ.
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Approximate Correlation Matrices

• Full scale approximations (Sang and Huang, 2012):

Σ = [ρ(sn, sn′)]n,n′=1,...,N ≈ Σg + Σ`,

where Σg and Σ` are a reduced-rank and a sparse
approximation matrix, respectively.

• Stochastic matrix approximations (Banerjee et al., 2013):

Σg = (ΦΣ)T (ΦΣΦT )−1(ΦΣ),

where Φ is a project matrix.

• Then, we can obtain Σ` as follow

Σ` = [Σ−Σg ] ◦Htaper (s, s′;α),

where Htaper is a correlation matrix defined by a compactly
supported correlation function with values equal to zeros when
|s− s′| ≥ α.
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Full Scale Approximations

Given a fixed accuracy level εg , approximate ρ(sn, sn′) = exp(
−||sn−sn′ ||

25
) (red

curve) using stochastic matrix approximations and the spherical covariance

function Htaper (sn, sn′ ;α) = (1 − ||sn−sn′ ||
α

)2+(1 +
||sn−sn′ ||

2α
).
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Obtain and Select h(X (s))

• Use principal component analysis (PCA) and kernel principal
component analysis (KPCA) as h(X (s)).
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• 15 PCAs and 50 KPCAs explain 99.62% and 97.79%
variations of 17 covariates, respectively.

• Use SSVS algorithms to select components.
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Fitting Regolith Depth

• First, we take the Box-Cox transformations on depth.
17,672 Non−censored Measurements
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• Fitting models with the following settings.
I Use the exponential correlation function.

I Consider the first 15 leading PCAs with 50 KPCAs.

I Give vague inverse gamma distributions as priors to all
variance parameters.

I Use a discrete uniform distribution for θ given a set
{10, 10.5, . . . , 35}.

I Use εg = 2000, α = {0, 0.1} km, and δp = {0.05, 0.1, 0.5}.
I Use 10-fold cross-validation for model validation.

I Run 10,000 MCMC iterations with 4,000 discarded as burn-in.
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Results

• Use the root-mean-square prediction error (RMSPE) for
evaluating model performance for the test set.

RMSPE =

√√√√ 1

T × I

I∑
i=1

T∑
t=1

(z(si )− ŷt(si ))2

where ŷt(si ) denotes the t-th prediction from the MCMC
iterations at location i .

15 PCAs 50 KPCAs
α = 0 km α = 0.1 km α = 0 km α = 0.1 km

σ2β = 0.01 3.6585 3.6786 2.6547 3.6736

σ2β = 0.1 3.5981 3.6141 3.5951 3.6118

σ2β = 1 3.6008 3.6173 3.5981 3.6142

σ2β = 10 3.6012 3.6173 3.5998 3.6155

σ2β = 100 3.6014 3.6178 3.6002 3.6159
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Selected KPCAs
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Mapping Regolith Depth
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Summary

• We consider a case where some spatial measurements are
incomplete and the sample size is large.

• We develop a hierarchical model where two data models are
constructed for non-censored and censored measurements, and
then their true process are combined together in the process
model.

• We use stochastic matrix approximations within the
framework of full scale approximations to reduce
computational burden due to large spatial data and increase
the efficiency of the MCMC sampler.

• In data analysis, we uses PCA and KPCA to subtract common
features of 17 variables.

• The SSVS helped identify important components relating to
the regolith depth in Queensland.
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