Mapping Soil Regolith Depth in Large and Censored Spatial Datasets Using Bayesian Hierarchical Models Wen-Hsi Yang 2 December 2015

www.data61.csiro.au

DATA

• Dr. Ross Searle: CSIRO Land and Water

• Dr. David Clifford: The Climate Corporation

• Dr. John Wilford: Geoscience Australia

Outline

- Motivating Examples: Soil Regolith Depth
- Methodology
- Modelling and Mapping Soil Regolith Depth in Queensland
- Summary

Regolith Depth

Regolith is a layer from the earth's surface down to unweathered bedrock at depth.

[Wilford and Thomas (2013)]

Depth Measurements in Queensland

DATA

Environmental and Ecological Variables

Modelling and Mapping Regolith Depth

- We propose a Bayesian hierarchically spatial model for large and censored spatial data.
- This model can account for the uncertainty of right-censored measurements.
- Also, our model can includes environmental and ecological raster data as covariates to explain depth variation.
- In addition, we use stochastic search variable selections (SSVS) algorithms to improve model selection and to perform model averaging to enhance prediction.
- Lastly, we apply this model to fit and predict regolith depth in Queensland.

Hierarchically Spatial Models

- Let {z(s_n)}^N_{n=1} be a set of measurements at locations
 s₁,..., s_N.
- The sample consist of n_J non-censored and n_K censored measurements. That is, $\{z(\mathbf{s}_j); j \in J\}$ and $\{z(\mathbf{s}_k); k \in K\}$ with $n_J + n_K = N$.
- Data model for non-censored measurements $z(s_j)$:

$$z(\mathbf{s}_j) \sim N(y(\mathbf{s}_j), \sigma_J^2),$$

where $y(\mathbf{s}_j)$ and σ_j^2 denote the true process at location \mathbf{s}_j and the measurement error variance of the non-censored samples.

• Data model for right censored measurements $z(\mathbf{s}_k)$:

$$z(\mathbf{s}_k) \sim TN(y(\mathbf{s}_k), \sigma_K^2)_{[-\infty, y(\mathbf{s}_k)]},$$

where $y(\mathbf{s}_k)$ and σ_K^2 denote the true process at location \mathbf{s}_k and the measurement error variance of the censored samples.

Hierarchically Spatial Models (Cont.)

• Process model for **Y**:

$$Y(\mathbf{s}_n) = \mathbf{h}(X(\mathbf{s}_n))'\beta + \eta(\mathbf{s}_n),$$

- ► h(X(s_n)) = (h₁(X(s_n)),..., h_q(X(s_n)))' is a vector of functions of p spatial covariates X(s_n).
- β is a $q \times 1$ coefficient vector corresponding to $\mathbf{h}(X(\mathbf{s}_n))$.
- ¬η(s_n) is a mean-zero spatial Gaussian process with a valid covariance function C_Y(s_n, s_n).
- ► Here, we assume $C_Y(\mathbf{s}_n, \mathbf{s}_{n'}) = \sigma_Y^2 \rho(\mathbf{s}_n, \mathbf{s}_{n'}; \theta)$, where σ_Y^2 is a constant variance and $\rho(\mathbf{s}_n, \mathbf{s}_{n'}; \theta)$ is a correlation function with a set of parameters θ .

Approximate Correlation Matrices

• Full scale approximations (Sang and Huang, 2012):

$$\mathbf{\Sigma} = [
ho(\mathbf{s}_n, \mathbf{s}_{n'})]_{n,n'=1,...,N} \approx \mathbf{\Sigma}_g + \mathbf{\Sigma}_\ell,$$

where $\pmb{\Sigma}_g$ and $\pmb{\Sigma}_\ell$ are a reduced-rank and a sparse approximation matrix, respectively.

• Stochastic matrix approximations (Banerjee et al., 2013):

$$\boldsymbol{\Sigma}_{g} = (\boldsymbol{\Phi}\boldsymbol{\Sigma})^{T} (\boldsymbol{\Phi}\boldsymbol{\Sigma}\boldsymbol{\Phi}^{T})^{-1} (\boldsymbol{\Phi}\boldsymbol{\Sigma}),$$

where Φ is a project matrix.

• Then, we can obtain $\pmb{\Sigma}_\ell$ as follow

$$\boldsymbol{\Sigma}_{\ell} = [\boldsymbol{\Sigma} - \boldsymbol{\Sigma}_{g}] \circ \boldsymbol{\mathsf{H}}_{\textit{taper}}(\boldsymbol{\mathsf{s}}, \boldsymbol{\mathsf{s}}'; \alpha),$$

where \mathbf{H}_{taper} is a correlation matrix defined by a compactly supported correlation function with values equal to zeros when $|\mathbf{s} - \mathbf{s}'| \ge \alpha$.

Full Scale Approximations

DATA

Given a fixed accuracy level ϵ_g , approximate $\rho(\mathbf{s}_n, \mathbf{s}_{n'}) = \exp(\frac{-||\mathbf{s}_n - \mathbf{s}_{n'}||}{25})$ (red curve) using stochastic matrix approximations and the spherical covariance function $H_{taper}(\mathbf{s}_n, \mathbf{s}_{n'}; \alpha) = (1 - \frac{||\mathbf{s}_n - \mathbf{s}_{n'}||}{\alpha})_+^2 (1 + \frac{||\mathbf{s}_n - \mathbf{s}_{n'}||}{2\alpha})$.

Obtain and Select h(X(s))

 Use principal component analysis (PCA) and kernel principal component analysis (KPCA) as h(X(s)).

DATA

- 15 PCAs and 50 KPCAs explain 99.62% and 97.79% variations of 17 covariates, respectively.
- Use SSVS algorithms to select components.

Fitting Regolith Depth

• First, we take the Box-Cox transformations on depth.

- Fitting models with the following settings.
 - Use the exponential correlation function.
 - Consider the first 15 leading PCAs with 50 KPCAs.
 - Give vague inverse gamma distributions as priors to all variance parameters.
 - Use a discrete uniform distribution for θ given a set $\{10, 10.5, \dots, 35\}$.
 - Use $\epsilon_g = 2000$, $\alpha = \{0, 0.1\}$ km, and $\delta_p = \{0.05, 0.1, 0.5\}$.
 - Use 10-fold cross-validation for model validation.
 - Run 10,000 MCMC iterations with 4,000 discarded as burn-in.

Results

Use the root-mean-square prediction error (RMSPE) for
 evaluating model performance for the test set.

$$\mathsf{RMSPE} = \sqrt{\frac{1}{T \times I} \sum_{i=1}^{I} \sum_{t=1}^{T} (z(\mathbf{s}_i) - \widehat{y_t(\mathbf{s}_i)})^2}$$

DATA

where $y_t(\mathbf{s}_i)$ denotes the *t*-th prediction from the MCMC iterations at location *i*.

	15 PCAs		50 KPCAs		
	$\alpha = \mathrm{0}~\mathrm{km}$	$\alpha = \mathrm{0.1~km}$		$\alpha = \mathrm{0}~\mathrm{km}$	$\alpha = 0.1~{\rm km}$
$\sigma_eta^2=$ 0.01	3.6585	3.6786	-	2.6547	3.6736
$\sigma_{\beta}^2 = 0.1$	3.5981	3.6141		3.5951	3.6118
$\sigma_{\beta}^2 = 1$	3.6008	3.6173		3.5981	3.6142
$\sigma_{eta}^2 = 10$	3.6012	3.6173		3.5998	3.6155
$\sigma_{eta}^2=100$	3.6014	3.6178		3.6002	3.6159

Selected KPCAs

CSIR

16 | Mapping Soil Regolith Depth in Large and Censored Spatial Datasets Using Bayesian Hierarchical Models | Wen-Hsi Yang

Summary

- We consider a case where some spatial measurements are incomplete and the sample size is large.
- We develop a hierarchical model where two data models are constructed for non-censored and censored measurements, and then their true process are combined together in the process model.
- We use stochastic matrix approximations within the framework of full scale approximations to reduce computational burden due to large spatial data and increase the efficiency of the MCMC sampler.
- In data analysis, we uses PCA and KPCA to subtract common features of 17 variables.
- The SSVS helped identify important components relating to the regolith depth in Queensland.

Selected References

- Banerjee, A., Dunson, D.B., and Tokdar, S.T. (2013) Efficient Gaussian process regression for large datasets. *Biometrika*. 100: 75–89.
- Cressie, N. & Wikle, C.K. (2001) *Statistics for Spatial-Temporal Data*. John Wiley & Sons.
- De Oliveira, V. (2005) Bayesian inference and prediction of Gaussian random fields based on censored data. *Journal of Computational and Graphical Statistics*. 14: 95–115.
- Jenny, H. (1941) Factors of Soil Formation: A System of Quantitative Pedology. McGraw Hill Book Co.
- Sang, H., and Huang, J.Z. (2012) A full scale approximation of covariance functions for large spatial data sets. *Journal of the Royal Statistical Society B.* 74: 111–132.
- George, E.I., and McCulloch, R.E. (1993) Variable selection via Gibbs sampling. *Journal of the American Statistical Association*. 88: 881–889.
- Wilford, J., and Thomas, M. (2013) Predicting regolith thickness in the complex weathering setting of the central Mt Lofty Ranges, South Australia. *Geoderma*. 206: 1–13.