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An example: Eucalyptus sparsifolia

• Analysis method for presence-only data, e.g.: Locations of 230 presence-only Eucalyptus sparsifolia
observa-tions within 100 km of the Greater Blue Mountains World Heritage Area (source: Renner et
al., 2015).
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Eucalyptus sparsifolia data

• Goal in analyzing the Eucalyptus sparsifolia data is a regression model that explains the effect of
environmental covariates and maps the underlying distribution of Eucalyptus sparsifolia.

• Covariates:
• Rainfall
• Max, min annual average temperature
• Frequency of fires
• Soil type
• Distance from roads and urban areas

Eucalyptus sparsifolia models

• Source: Renner et al. (2015)
• Downweighted Poisson regression (DWPR)
• Log-Gaussian Cox process (LGCP)

Covariate Est. coef (DWPR) Est. coef (LGCP)
Intercept -715.8 -11.6
Fire count -3.4 -7.8
Min temp. -29.2 -1.8
Max temp. 43.5 -0.1
Rainfall 326.4 -7.6

• It was proposed in the paper that the difference was down to spatial confounding.

Overview

• When analyzing presence-only data that exhibits spatial structure beyond that explained by covariates,
a Cox process model may be useful.

• A Cox process may introduce a spatial random effect that is correlated with the covariates, leading to
spatial confounding.

• We propose a method to implement a Cox process model that avoids spatial confounding by restricting
the random effect to be orthogonal to the fixed effects.

• Also present a method to quickly estimate parameters of a Cox process via fixed-rank spatial effect and
a variational approximation.

Outline

• Point process models
• Homogeneous Poisson
• Inhomogeneous Poisson
• Cox process
• Estimation
• Spatial confounding
• Spatial random effects
• Variational approximations and the cox package
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• Simulation study

Poisson point process

• Homogeneous: assume a constant intensity λ on domain D with area |D|.
• Number of points N is distributed as N ∼ Pois(λ|D|).
• Location of points follows uniform distributon on the domain
• Inhomogeneous: intensity varies with location s: λ(s)
• Now N ∼ Pois{

∫
D λ(s)ds}

• Point density is proportional to λ(s).
• Likelihood of an observed data set from an inhomogeneous Poisson process:

L{λ(·)} =
{∫
D
λ(s)ds

}N

exp
{
−
∫
D
λ(s)ds

}
/N !

Inhomogeneous Poisson process

• Regression: suppose the intensity is a function of some covariates X.
• E.g., λ(s) = exp {x′(s)β}
• Renner et al. (2015) proposed a “down-weighted Poisson regression” (DWPR) for estimation.
• Uses numerical quadrature to evaluate the integral

∫
D λ(s)ds.

• Numerical quadrature: discretize the domain into cells and sum the values in the cells (Berman and
Turner, 1992).

• May require quadrature points numbering 104 − 106.

Eucalyptus sparsifolia revisited

After modeling the disribution of Eucalyptus sparsifolia as an inhomogenous Poisson process, check for
clustering: - Both K-function and the Pearson residuals indicate clustering not explained by the model
(figures source: Renner et al., 2015).
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Cox process

• Often in regression models with spatially indexed observations, we include a factor to account for local
similarity not explained by the covariates.

• Geostatistical correlation functions
• Conditional autoregressive models
• Cox process is an inhomogeneous Poisson process where
• λ(s) = exp {x′(s)β + ζ(s)}
• ζ ∼MVN(0,Σ)
• Σij = C(si, sj) is a spatial covariance function

Outline

• Point process models
• Homogeneous Poisson
• Inhomogeneous Poisson
• Cox process
• Estimation
• Spatial confounding
• Spatial random effects
• Variational approximations and the cox package
• Simulation study

Spatial confounding

• “Adding spatially-correlated errors can mess up the fixed effect you love” (Hodges and Reich, 2010)
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• In general, ζ may be correlated with columns of X, which will affect the estimates β̂
• Consider a linear mixed model, representing a conditional autoregressive (CAR) model with neighborhood

matrix Q:
y = Xβ + InS + ε

• Where S ∼MVN
(
0, (τsQ)−1)

• Eigendecomposition of neighborhood matrix: Q = ZDZ ′

• Now let b = Z ′S ∼MVN
(
0, (τsD)−1)

Spatial confounding (source: Hodges and Reich, 2010)

• Rewrite the model:
y = Xβ +Zb+ ε

• The eigenvalues dj , j = 1, . . . , r are shrinkage parameters for components of the random effect.
• Any column of Z that is colinear with X and has little shrinkage is confounded with the fixed effects.
• Equivalently: any eigenvector of the spatial precision matrix that is colinear with X and has a small

eigenvalue is confounded with the fixed effects.
• Confounding biases coefficient estimates.

Spatial confounding

• Spatial confounding has been identified in areal and geostatistical regression models, with various
interpretations

• Unaccounted-for explanatory variable, in a geostatistical context (Paciorek, 2011)
• Covariates having spatial structure on the observational units (Hodges and Reich, 2010)
• Typical prescription has been to project the model’s spatial random component into a subspace

orthogonal to the covariates (Hodges and Reich, 2010; Hughes and Haran, 2013).
• What about point processes?

Spatial confounding in Cox process models

• Cox process models use 104 − 106 quadrature points
• Covariance matrix of spatial random process may be 106 × 106

• Typical methods of accounting for spatial confounding are impractical for Cox process model
• Impractical to calculate the matrix of distances between locations for a geostatistical covariance model
• After projection orthogonal to the covariates, the neighborhood matrix for a CAR model would not be

sparse
• Eigendecomposition, etc. are expensive
• This makes it impossible to assess degree of confounding

Outline

• Point process models
• Homogeneous Poisson
• Inhomogeneous Poisson
• Cox process
• Estimation
• Spatial confounding
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• Spatial random effects
• Variational approximations and the cox package
• Simulation study

Spatial random effects

Cressie and Johannesson (2008) introduced “Fixed rank kriging”

• Approximates a Gaussian random field as the sum of a fixed number of basis functions
• Can use your favorite basis, multiresolution basis is recommended (Nychka et al., 2002)
• E.g., multi-resolution bisquare functions
• Results in a low-rank random effect that is easily projected orthogonal to the fixed effects!

Multiresolution bisquares
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Outline

• Point process models
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• Homogeneous Poisson
• Inhomogeneous Poisson
• Cox process
• Estimation
• Spatial confounding
• Spatial random effects
• Variational approximations and the cox package
• Simulation study

Marginal likelihood

• The likelihood to maximize is marginal to the random effects
• i.e., with the random effects “integrated out”
• For our model, this looks like

π(y) =
∫

U

π(y|u)π(u)du

=
∫

U

[∫
D

exp {x′(s)β(s) + Su} ds
]N

×

exp
[∫
D

exp {x′(s)β(s) + Su} ds
]
/N !×

( τ
2π

)r/2
exp

(
−τ u

′u

2

)
du

Variational approximation

• Evaluating the integral analytically is not practical (possible?).
• Markov chain Monte Carlo is a common approach to approximating the integral, but slow.
• We propose a variational approximation to the marginal likelihood (Ormerod and Wand, 2010; Hui et

al., unpublished)
• The variational lower bound for an arbitrary density q is a result of Jensen’s inequality:

log π(y) ≥
∫

U

q(u) log {π(y,u)/q(u)} du

Variational approximation

• Rewrite the likelihood lower bound:∫
U

log {π(y,u)} q(u)du−
∫

U

log {q(u)} q(u)du

• Get the joint log-likelihood just by writing the hierarchical model, ignoring constants:

log{π(y,u)} =
n∑

i=1

[
wi

{
yi(x′iβ + S′iu)− exp(x′iβ + S′iu)

}]
+ r/2 log(τ)− u′u/(2τ)

• Assume that q is multivariate Gaussian with expectation M and variance V .
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Variational approximation

• Now finding the likelihood bound requires only that we calculate a few expectations with respect to a
multivariate normal distribution:

• u ∼MVN(M ,V )

• Eu(u′u|M ,V )

• Eu(Su|M ,V )

• Eu{exp(Su)|M ,V }

• Maximize the lower bound by the method of conjugate gradient: requires only the first derivative of the
lower bound

• R package is under active development, available via devtools from github.com/wrbrooks/cox.

Eucalyptus sparsifolia models

• Using a slightly different model than Renner et al. (2015) (no soil type), we estimate the coefficients:

Covariate DWPR orthogonalized nonorthogonalized
Intercept -793.6 -222.8 95.8
Fire count -6.6 -0.7 1.3
Min temp. -25.9 -15.4 -6.7
Max temp. 47.8 14.4 -4.9
Rainfall 365.5 85.9 -40.6
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Estimated random effects

• Left: not orthogonalized, right: orthogonalized

Recall:
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Outline

• Point process models
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• Inhomogeneous Poisson
• Cox process
• Estimation
• Spatial confounding
• Spatial random effects
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• Simulation study

Simulaton study

• Design: generate covariates that are known to correlate with the random effect process
• Fix locations of the quadrature points and compute the matrix of multiresolution bisquares, S
• Find the second, third, and fourth singular vectors of S
• Model these singular vectors using a GAM, so that their values can be computed at any location
• These are the covariates.
• Simulate the linear predictor: η = Xβ + ζ
• β = (1,−0.2, 0)
• ζ ∼ GRF(σ2 = 0.5, τ = 0.1) (exponential covariance)

Simulation study: covariates
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Simulation study

• Scale the covariates
• scale.X = 1, 2, 4 (Increase signal strength)
• Scale the random field
• scale.re = 1, 0.5 (decrease noise)
• Alter the intercept
• β0 = 4, 5, 6 (Increase sample size)
• Estimate the regression parameters under multiresolution bisquares, both orthogonalized and nonorthog-

onalized.
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Simlation results

• No apparent difference between orthogonalized, nonorthogonalized estimation!
• Bias
• MSE
• Estimated coefficient variance/confidence intervals
• Why?
• Relative to DWPR (no spatial effect) coefficient standard errors were smaller.
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