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Species Distribution Models

Presence-only Data

e.g. Reported locations of Eucalyptus sparsifolia in the Blue Mountains
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Species Distribution Models

Eucalyptus sparsifolia in the Blue Mountains
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Species Distribution Models

Species Distribution Modelling
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Point Process Models Inhomogeneous Poisson point process model

Poisson point process models

Starting point: inhomogeneous Poisson point process model with intensity
µ(s) defined over region A, which assumes:

Point locations sP are independently distributed, conditional on
environment

Number of points m is a realisation of a Poisson random variable with
mean

∫
s∈A µ(s)ds

Intensity modelled as a log-linear function of environmental variables:

lnµ(s) = β0 + β1 × rain(s) + β2 × temp(s) + . . .

Maximise log-likelihood (using GLM software):

l(β; sP ) =

m∑
i=1

lnµ(si)−
∫
s∈A

µ(s)ds
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Point Process Models Inhomogeneous Poisson point process model

Numerical Integration

∫
s∈A µ(s)ds ≈

∑n
i=1wiµ(si),

where w = {w1, . . . , wn} are quadrature weights and s0 = {sm+1, . . . , sn}
are quadrature points.
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Point Process Models Inhomogeneous Poisson point process model

What is the intensity measuring?

Intensity is not a probability, but is related to abundance, but abundance of
what?

What we want: What we get:
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Point Process Models Links to other methods

Equivalence Results

Over the past 5 years, point process models have been linked to many other
methods for fitting SDMs to presence-only data, e.g.:

Poisson point process models (ignoring weights) are equivalent to
pseudo-absence logistic regression∗ and MAXENT†.

This links Poisson point process models to the two most common approaches
to presence-only SDM!

Consequence of ignoring weights: Pseudo-absence logistic regression and
MAXENT are scale-dependent (predicted probability depends on number of
pseudo-absences/background points)

∗Warton, D.I. & Shepherd, L.C. (2010) Poisson point process models solve the “pseudo-absence
problem” for presence-only data in ecology. Annals of Applied Statistics 4, 1383–1402.
†Renner, I.W. & Warton, D.I. (2013) Equivalence of MAXENT and Poisson point process models for

species distribution modeling in ecology. Biometrics 69, 274–281.
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Point Process Models Links to other methods

Fitting a Poisson PPM

Equivalence results mean there are many ways to fit Poisson PPMs:

MAXENT software (ignoring weights)

R packages spatstat, ppmlasso, and dismo (R version of
MAXENT)

“Infinitely weighted logistic regression” (IWLR)‡
>up.wt = (10^6)^(1 - Pres)
>iwlr = glm(Pres ~ X.des, family = binomial(), weights = up.wt)

“Downweighted Poisson regression” (DWPR)§
>p.wt = rep(1.e-6, length(Pres))
>p.wt[Pres == 0] = Area/sum(Pres == 0)
>dwpr = glm(Pres/p.wt ~ X.des, family = poisson(), weights = p.wt)

‡Fithian, W. & Hastie, T. (2013) Finite-sample equivalence in statistical models for presence-only data.
The Annals of Applied Statistics 7, 1917–1939.
§Renner, I.W. et al. (2015) Point process models for presence-only analysis – a review. Methods in

Ecology & Evolution 6, 366–379.
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Point Process Models Software

Software properties

Property s
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Regularisation × X X X X1 × ×
Standard errors X2 × X2 X2 × X X
Variable importance plots × × × × X × ×
Diagnostic plots X X × × × × ×
Spatial dependence X X × × × X X
Non-linearity (eg smoothers) X X X X X X X
Scale-invariant X X × X X3 X X
1 LASSO only

2 For Poisson models only

3 Raw output only
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Advances in presence-only methods

Why use PPMs?

The point process model framework provides advances to presence-only
SDM, including:

Criteria for choice of pseudo-absences

Checking assumptions

Ecological insight

Data-driven LASSO regularisation

Accounting for observer bias
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Advances in presence-only methods Pseudo-absence choice

Choice of pseudo-absences

Most presence-only methods require pseudo-absences. But how many should
be chosen? Where should they be placed?
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Advances in presence-only methods Pseudo-absence choice

Previous recommendations

Lots of literature on how to choose pseudo-absences:

A fixed number (often 10,000)

A fixed ratio of presence:pseudo-absence points

Choose points more likely to be true absences

These recommendations are generally justified through simulation or by
looking at only a few data sets.

This has led to confusion about which of the (sometimes contradictory)
approaches to take.
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Advances in presence-only methods Pseudo-absence choice

Likelihood convergence

PPM framework turns pseudo-absence choice into quadrature problem.

Regular grid: choose enough for
likelihood convergence.

findres function in ppmlasso:

Random quadrature points (DWPR):
standard error formula.

Required number for standard error
within e: |A|

2s2

e2

For E. sparisolia using an initial fit of
10,000 random quadrature points,
s = 0.0103, so the required number to
reduce the standard error to below
e = 2 is roughly 198,000.
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Advances in presence-only methods Pseudo-absence choice

Why use PPMs?

The point process model framework provides advances to presence-only
SDM, including:

Criteria for choice of pseudo-absences
I Until likelihood convergence
I Standard error formula

Checking assumptions

Ecological insight

Data-driven LASSO regularisation

Accounting for observer bias
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Advances in presence-only methods Checking model assumptions

Model diagnostics

Many SDM methods (MAXENT, P-A regression) currently have no way of
checking model assumptions (particularly the independence assumption).

Lots of literature on checking assumptions for PPMs.

One check of independence assumption: K-envelope:

Poisson PPM (hence MAXENT/P-A
regression) is not appropriate for E.
sparsifolia!

More diagnostic (and other) tools available
via spatstat.
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Advances in presence-only methods Checking model assumptions

Accounting for dependence: AI models

Other types of PPMs can account for point dependence:

An Area-interaction model of radius r

fits conditional intensity at s as a
log-linear function of
environmental variables x(s) and
point interaction ts(sP)

lnµ(s, sP ) = x(s)′β + ts(sP )θ

available in spatstat and
ppmlasso
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Advances in presence-only methods Checking model assumptions

Accounting for dependence: Cox processes

A more flexible way to account for dependence.

Log-Gaussian Cox process models: intensity µ(s) modelled as a realisation of
a stochastic Gaussian process ξ(s):

lnµ(s) = x(s)′β + ξ(s)

Fitted via MCMC (lgcp package) or integrated nested Laplace
approximation (R-INLA package)
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Advances in presence-only methods Checking model assumptions

Why use PPMs?

The point process model framework provides advances to presence-only
SDM, including:

Criteria for choice of pseudo-absences
I Until likelihood convergence
I Standard error formula

Checking assumptions
I Many diagnostic tools available
I Alternative PPMs to account for point dependence

Ecological insight

Data-driven LASSO regularisation

Accounting for observer bias
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Advances in presence-only methods Ecological insight

Explaining the distribution

Eucalyptus sparsifolia is known to prefer “low nutrient soils, but some on
medium and high nutrient soils, over a wide range of rainfall”.?

Minimum temperature emerges as an important driver of the distribution of
Eucalyptus sparsifolia that was previously unknown to ecologists, as evident
from a significantly negative quadratic coefficient.

This variable has implications for climate change projections, suggesting a
substantial decrease in Eucalyptus sparsifolia intensity at the southern end of
its range under warming scenarios.

?Hager, T. & Benson, D. (2010) The Eucalypts of the Greater Blue Mountains World Heritage Area:
distribution, classification and habitats of the species of Eucalyptus, Angophora and Corymbia (family
Myrtaceae) recorded in its eight conservation reserves. Cunninghamia 10, 425–444.
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Advances in presence-only methods Ecological insight

MAXENT’s “explain” tool
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Advances in presence-only methods Ecological insight

Why use PPMs?

The point process model framework provides advances to presence-only
SDM, including:

Criteria for choice of pseudo-absences
I Until likelihood convergence
I Standard error formula

Checking assumptions
I Many diagnostic tools available
I Alternative PPMs to account for point dependence

Ecological insight
I Tools to discover important environmental covariates

Data-driven LASSO regularisation

Accounting for observer bias
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Advances in presence-only methods Other Advantages

Why use PPMs?

The point process model framework provides advances to presence-only
SDM, including:

Criteria for choice of pseudo-absences
I Until likelihood convergence
I Standard error formula

Checking assumptions
I Many diagnostic tools available
I Alternative PPMs to account for point dependence

Ecological insight
I Tools to discover important environmental covariates

Data-driven LASSO regularisation
I Various options available in ppmlasso

Accounting for observer bias
I Include covariates associated with site accessibility
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Extensions

Extensions of PPMs

Work with Olivier Gimenez, who
works in the CEFE in Montpellier,
France:

Combined data sources
Dynamic SDM

Tricky applications for brown
bears and monk seals in Greece
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Extensions Combined likelihood

Combined data sources

In many situations, there is more than one source of data.

Example: Lynx in the Jura Mountains in France

Sightings in the wild (P-O)

Domestic interferences (P-O)

Camera traps (survey)
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Extensions Combined likelihood

Combined Likelihood

Typically, people build a model using only one source of data.

How might we build a model using multiple sources of data?

Presence-only and presence-absenceN:
l(α,β,γ, δ) = lPO(α,β,γ, δ) + lPA(β,γ)

Presence-only and occupancy∗∗: l(α,β,γ) = lPO(α,β) + lOcc(β,γ)

Goal for lynx:
l(αW ,αD,β,γ) = lWild PO(αW ,β) + lDomestic PO(αD,β) + lOcc(β,γ)

NFithian, W., Elith, J., Hastie, T., & Keith, D.A. (2015) Bias correction in species distribution models:
pooling survey and collection data for multiple species. Methods in Ecology and Evolution 6, 424–438.
∗∗Dorazio, R.M. (2014) Accounting for imperfect detection and survey bias in statistical analysis of

presence-only data. Global Ecology and Biogeography 23, 1472–1484.
Ian W. Renner PPMs for presence-only data IBS 2015 27 / 32



Extensions Combined likelihood

Presence-Only and Presence-Absence

µPO: intensity of
reportings per unit area

µPA: “intensity” of
species per unit area

µPO+PA: ?
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Extensions Combined likelihood

Presence-Only and Occupancy

µPO: intensity of
reportings per unit area

µOcc: “intensity” of
species per unit area

µPO+Occ: ?
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Future Work

Future Work

PPMs
I Data quality

F Errors in covariates
F Accuracy of location coordinates

I Temporal aspect
F Decades of observed locations
F Environmental variation over observed timespan
F Applications for telemetry, invasive species

Combined likelihood
I Occupancy model stability: LASSO on detection covariates?
I Weighting: presence-only seems to dominate?

Dynamic SDM: PPMs + HMMs
I “Self-exciting” Poisson point processes to model wolf attack patterns?
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Conclusion
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