Point process models for presence-only analysis

Ian Renner, Jane Elith, Adrian Baddeley, William Fithian, Trevor Hastie, Steven J. Phillips, Gordana Popovic, and David I. Warton

December 2, 2015

- Background (Species Distribution Models)
- Point Process Models
- Advances in Presence-Only Analysis
- Extensions of PPMs
- Future Work

Presence-only Data

e.g. Reported locations of Eucalyptus sparsifolia in the Blue Mountains

Species Distribution Models

Eucalyptus sparsifolia in the Blue Mountains

Species Distribution Models

Species Distribution Modelling

Poisson point process models

Starting point: inhomogeneous Poisson point process model with intensity $\mu(s)$ defined over region \mathcal{A} , which assumes:

- Point locations s_P are independently distributed, conditional on environment
- Number of points m is a realisation of a Poisson random variable with mean $\int_{s\in\mathcal{A}}\mu(s)ds$

Intensity modelled as a log-linear function of environmental variables:

$$\ln \mu(s) = \beta_0 + \beta_1 \times \operatorname{rain}(s) + \beta_2 \times \operatorname{temp}(s) + \dots$$

Maximise **log-likelihood** (using GLM software):

$$l(\boldsymbol{\beta}; \mathbf{s}_P) = \sum_{i=1}^m \ln \mu(s_i) - \int_{s \in \mathcal{A}} \mu(s) ds$$

Numerical Integration

$$\int_{s \in \mathcal{A}} \mu(s) ds \approx \sum_{i=1}^{n} w_i \mu(s_i),$$

where $\mathbf{w} = \{w_1, \dots, w_n\}$ are quadrature weights and $\mathbf{s}_0 = \{s_{m+1}, \dots, s_n\}$ are quadrature points.

What is the intensity measuring?

Intensity is not a probability, but is related to abundance, but abundance of what?

What we want:

What we get:

Equivalence Results

Over the past 5 years, point process models have been linked to many other methods for fitting SDMs to presence-only data, *e.g.*:

Poisson point process models (ignoring weights) are equivalent to pseudo-absence logistic regression* and MAXENT[†].

This links Poisson point process models to the two most common approaches to presence-only SDM!

Consequence of ignoring weights: Pseudo-absence logistic regression and MAXENT are scale-dependent (predicted probability depends on number of pseudo-absences/background points)

^{*}Warton, D.I. & Shepherd, L.C. (2010) Poisson point process models solve the "pseudo-absence problem" for presence-only data in ecology. *Annals of Applied Statistics* **4**, 1383–1402.

[†]Renner, I.W. & Warton, D.I. (2013) Equivalence of MAXENT and Poisson point process models for species distribution modeling in ecology. *Biometrics* **69**, 274–281.

Fitting a Poisson PPM

Equivalence results mean there are many ways to fit Poisson PPMs:

- MAXENT software (ignoring weights)
- R packages spatstat, ppmlasso, and dismo (R version of MAXENT)
- "Infinitely weighted logistic regression" (IWLR)[‡]

```
>up.wt = (10^6)^(1 - Pres)
>iwlr = glm(Pres ~ X.des, family = binomial(), weights = up.wt)
```

• "Downweighted Poisson regression" (DWPR)§

```
>p.wt = rep(1.e-6, length(Pres))
>p.wt[Pres == 0] = Area/sum(Pres == 0)
>dwpr = glm(Pres/p.wt ~ X.des, family = poisson(), weights = p.wt)
```

[‡]Fithian, W. & Hastie, T. (2013) Finite-sample equivalence in statistical models for presence-only data. *The Annals of Applied Statistics* **7**, 1917–1939.

[§]Renner, I.W. *et al.* (2015) Point process models for presence-only analysis – a review. *Methods in Ecology & Evolution* **6**, 366–379.

Software

Software properties

Property	spatstat	ppmlasso	IWLR	DWPR	MAXENT	R-INLA	lgcp
Regularisation	×	\checkmark	\checkmark	\checkmark	\checkmark^1	×	×
Standard errors	\checkmark^2	×	\checkmark^2	\checkmark^2	×	\checkmark	\checkmark
Variable importance plots	×	×	×	×	\checkmark	×	×
Diagnostic plots	\checkmark	\checkmark	×	×	×	×	×
Spatial dependence	\checkmark	\checkmark	×	×	×	\checkmark	\checkmark
Non-linearity (eg smoothers)	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Scale-invariant	\checkmark	\checkmark	×	\checkmark	\checkmark^3	\checkmark	\checkmark

1 LASSO only

2 For Poisson models only

3 Raw output only

Why use PPMs?

The point process model framework provides advances to presence-only SDM, including:

- Criteria for choice of pseudo-absences
- Checking assumptions
- Ecological insight
- Data-driven LASSO regularisation
- Accounting for observer bias

Choice of pseudo-absences

Most presence-only methods require pseudo-absences. But how many should be chosen? Where should they be placed?

Previous recommendations

Lots of literature on how to choose pseudo-absences:

- A fixed number (often 10,000)
- A fixed ratio of presence:pseudo-absence points
- Choose points more likely to be true absences

These recommendations are generally justified through simulation or by looking at only a few data sets.

This has led to confusion about which of the (sometimes contradictory) approaches to take.

Likelihood convergence

PPM framework turns pseudo-absence choice into quadrature problem.

Regular grid: choose enough for likelihood convergence.

findres function in ppmlasso:

Random quadrature points (DWPR): standard error formula.

Required number for standard error within $e \colon \frac{|\mathcal{A}|^2 s^2}{e^2}$

For *E. sparisolia* using an initial fit of 10,000 random quadrature points, s = 0.0103, so the required number to reduce the standard error to below e = 2 is roughly 198,000.

Why use PPMs?

The point process model framework provides advances to presence-only SDM, including:

- Criteria for choice of pseudo-absences
 - Until likelihood convergence
 - Standard error formula
- Checking assumptions
- Ecological insight
- Data-driven LASSO regularisation
- Accounting for observer bias

Model diagnostics

Many SDM methods (MAXENT, P-A regression) currently have no way of checking model assumptions (particularly the independence assumption).

Lots of literature on checking assumptions for PPMs.

One check of independence assumption: K-envelope:

Poisson PPM (hence MAXENT/P-A regression) is not appropriate for *E. sparsifolia*!

More diagnostic (and other) tools available via spatstat.

Accounting for dependence: AI models

Other types of PPMs can account for point dependence:

An Area-interaction model of radius r

- fits conditional intensity at s as a log-linear function of environmental variables x(s) and point interaction t_s(s_P)
- $\ln \mu(s, \mathbf{s}_P) = \mathbf{x}(s)' \boldsymbol{\beta} + t_s(\mathbf{s}_P) \boldsymbol{\theta}$
- available in spatstat and ppmlasso

Accounting for dependence: Cox processes

A more flexible way to account for dependence.

Log-Gaussian Cox process models: intensity $\mu(s)$ modelled as a realisation of a stochastic Gaussian process $\xi(s)$:

$$\ln \mu(s) = \mathbf{x}(s)'\boldsymbol{\beta} + \xi(s)$$

Fitted via MCMC (lgcp package) or integrated nested Laplace approximation (R-INLA package)

Why use PPMs?

The point process model framework provides advances to presence-only SDM, including:

- Criteria for choice of pseudo-absences
 - Until likelihood convergence
 - Standard error formula
- Checking assumptions
 - Many diagnostic tools available
 - Alternative PPMs to account for point dependence
- Ecological insight
- Data-driven LASSO regularisation
- Accounting for observer bias

Explaining the distribution

Eucalyptus sparsifolia is known to prefer "low nutrient soils, but some on medium and high nutrient soils, over a wide range of rainfall".*

Minimum temperature emerges as an important driver of the distribution of *Eucalyptus sparsifolia* that was previously unknown to ecologists, as evident from a significantly negative quadratic coefficient.

This variable has implications for climate change projections, suggesting a substantial decrease in *Eucalyptus sparsifolia* intensity at the southern end of its range under warming scenarios.

^{*}Hager, T. & Benson, D. (2010) The Eucalypts of the Greater Blue Mountains World Heritage Area: distribution, classification and habitats of the species of Eucalyptus, Angophora and Corymbia (family Myrtaceae) recorded in its eight conservation reserves. *Cunninghamia* **10**, 425–444.

MAXENT's "explain" tool

Why use PPMs?

The point process model framework provides advances to presence-only SDM, including:

- Criteria for choice of pseudo-absences
 - Until likelihood convergence
 - Standard error formula
- Checking assumptions
 - Many diagnostic tools available
 - Alternative PPMs to account for point dependence
- Ecological insight
 - Tools to discover important environmental covariates
- Data-driven LASSO regularisation
- Accounting for observer bias

Why use PPMs?

The point process model framework provides advances to presence-only SDM, including:

- Criteria for choice of pseudo-absences
 - Until likelihood convergence
 - Standard error formula
- Checking assumptions
 - Many diagnostic tools available
 - Alternative PPMs to account for point dependence
- Ecological insight
 - Tools to discover important environmental covariates
- Data-driven LASSO regularisation
 - Various options available in ppmlasso
- Accounting for observer bias
 - Include covariates associated with site accessibility

Extensions

Extensions of PPMs

Work with Olivier Gimenez, who works in the CEFE in Montpellier, France:

- Combined data sources
- Dynamic SDM
- Tricky applications for brown bears and monk seals in Greece

Combined data sources

In many situations, there is more than one source of data.

Example: Lynx in the Jura Mountains in France

- Sightings in the wild (P-O)
- Domestic interferences (P-O)
- Camera traps (survey)

Longitude

Combined Likelihood

Typically, people build a model using only one source of data.

How might we build a model using multiple sources of data?

- Presence-only and presence-absence^A: $l(\alpha, \beta, \gamma, \delta) = l_{PO}(\alpha, \beta, \gamma, \delta) + l_{PA}(\beta, \gamma)$
- Presence-only and occupancy**: $l(\alpha, \beta, \gamma) = l_{\text{PO}}(\alpha, \beta) + l_{\text{Occ}}(\beta, \gamma)$
- Goal for lynx: $l(\boldsymbol{\alpha}_{\boldsymbol{W}}, \boldsymbol{\alpha}_{\boldsymbol{D}}, \boldsymbol{\beta}, \boldsymbol{\gamma}) = l_{\text{Wild PO}}(\boldsymbol{\alpha}_{\boldsymbol{W}}, \boldsymbol{\beta}) + l_{\text{Domestic PO}}(\boldsymbol{\alpha}_{\boldsymbol{D}}, \boldsymbol{\beta}) + l_{\text{Occ}}(\boldsymbol{\beta}, \boldsymbol{\gamma})$

[▲] Fithian, W., Elith, J., Hastie, T., & Keith, D.A. (2015) Bias correction in species distribution models: pooling survey and collection data for multiple species. *Methods in Ecology and Evolution* **6**, 424–438.

^{**}Dorazio, R.M. (2014) Accounting for imperfect detection and survey bias in statistical analysis of presence-only data. *Global Ecology and Biogeography* **23**, 1472–1484.

Extensions Combined likelihood

Presence-Only and Presence-Absence

 $\mu_{\rm PO}$: intensity of reportings per unit area

 μ_{PA} : "intensity" of species per unit area

Presence-Only and Occupancy

 $\mu_{\rm PO}$: intensity of reportings per unit area

 μ_{Occ} : "intensity" of species per unit area

Future Work

• PPMs

- Data quality
 - ★ Errors in covariates
 - ★ Accuracy of location coordinates
- Temporal aspect
 - ★ Decades of observed locations
 - ★ Environmental variation over observed timespan
 - ★ Applications for telemetry, invasive species
- Combined likelihood
 - Occupancy model stability: LASSO on detection covariates?
 - Weighting: presence-only seems to dominate?
- Dynamic SDM: PPMs + HMMs
 - "Self-exciting" Poisson point processes to model wolf attack patterns?

Acknowledgements

A big thank you to:

- The organising committee for this great conference
- All of my co-authors
- All of you, for your attention!

References

- Renner, I.W. & Warton, D.I. (2013). Equivalence of MAXENT and Poisson point process models for species distribution modeling in ecology. *Biometrics* **69**, 274–281.
- Renner, I.W., Baddeley, A., Elith, J., Fithian, W., Hastie, T., Phillips, S., Popovic, G. & Warton, D.I. (2015). Point process models for presence-only analysis a review. *Methods in Ecology & Evolution* **6**, 366–379.
- Warton, D.I., Renner, I.W., & Ramp, D. (2013). Model-based control of observer bias for the analysis of presence-only data in ecology. *PLoS ONE* **8**, e79168.