

Estimating Abundance from Counts in Large Data Sets of Irregularly-Spaced Plots using Spatial Basis Functions

Jay Ver Hoef

NOAA National Marine Mammal Lab NOAA Fisheries International Arctic Research Center Fairbanks, Alaska, USA

つひひ

Introduction

1) Block Kriging

2)Block Prediction for Finite Populations on a Grid

3)Block Prediction for Finite Populations Irregularly Spaced

4日 8

Jay M. Ver Hoef National Marine Mammal Lab NoAA National Marine Mammal Lab

Goals

An estimator that is:

- \triangleright fast to compute, robust, and requires few modeling decisions, similar to classical survey methods,
- \triangleright based only on counts within plots; actual spatial locations of animals are unknown,
- \triangleright for the actual number of seals, not the mean of some assumed process that generated the data,
- \blacktriangleright have a variance estimator with a population correction factor that shrinks to zero as the proportion of the study area that gets sampled goes to one,
- \blacktriangleright unbiased with valid confidence intervals,
- \triangleright able to accommodate nonstationary variance and excessive zeros throughout the area

[Introduction](#page-1-0) [Model](#page-4-0) [Inference](#page-9-0) [Overdispersion](#page-15-0) [Simulations](#page-19-0) [Example](#page-25-0) [Summary](#page-28-0)

Inhomogeneous Spatial Point Processes

T(*V*) is the total number of points in planar region *V*

$$
\lambda(\mathbf{s}) = \lim_{|dx| \to 0} \frac{E(T(dx))}{|dx|}
$$

Expected abundance in *A* ⊆ *R*:

$$
\mu(A) = \int_A \lambda(\mathbf{u}|\boldsymbol{\theta})d\mathbf{u}
$$

Abundance is assumed random

$$
T(A) \sim \mathrm{Poi}(\mu(A))
$$

Resulting in an observed pattern $\mathcal{S}^+ = (\mathbf{s}_1, \dots, \mathbf{s}_N)$

4 0 8

Outline of an Estimator

- \blacktriangleright $\mathcal{B} = \bigcup_{i=1}^{n} (B_i \cap A)$
- \blacktriangleright $\mathcal{U} \equiv \overline{\mathcal{B}} \cap A$
- \blacktriangleright $T(A) = T(B) + T(U)$
- \blacktriangleright *T*(*U*) ∼ Poi(μ (*U*))
- \blacktriangleright $\mu(\mathcal{U}) = \int_{\mathcal{U}} \lambda(\mathbf{u}|\boldsymbol{\theta})d\mathbf{u}$

$$
\blacktriangleright \widehat{T}(A) = T(\mathcal{B}) + \widehat{T}(\mathcal{U})
$$

 \blacktriangleright $T(\mathcal{B}) \to T(A) \Rightarrow \widehat{T}(A) \to T(A)$

4 D F

From IPP to Poisson Regression

- \blacktriangleright *Y*(*B*_{*i*}) ∼ Poi(μ (*B*_{*i*}))
- \blacktriangleright $\mu(B_i) = \int_{B_i} \lambda(\mathbf{u}|\boldsymbol{\theta}) d\mathbf{u}$
- \blacktriangleright Let s_i be centroid of B_i

$$
\blacktriangleright \ \mu(B_i) \approx |B_i| \lambda(\mathbf{s}_i | \boldsymbol{\theta})
$$

- \blacktriangleright log($\mu(B_i)$) = log($|B_i|$) + log($\lambda(\mathbf{s}_i|\boldsymbol{\theta})$)
- \blacktriangleright $\log(\lambda(\mathbf{s}_i|\boldsymbol{\theta})) = \mathbf{x}(\mathbf{s}_i)' \boldsymbol{\beta}$

Now us spatial basis functions to generate $\mathbf{x}(\mathbf{s}_i)$

つひひ

Spatial Basis Functions

knot location: k-means clustering of dense grid of spatial coordinates

Jay M. Ver Hoef Noaca National Marine Mammal Lab

つひひ

4 0 8

[Introduction](#page-1-0) [Model](#page-4-0) [Inference](#page-9-0) [Overdispersion](#page-15-0) [Simulations](#page-19-0) [Example](#page-25-0) [Summary](#page-28-0)

Fitting the Model

minimize minus the log-likelihood:

 $-\ell(\boldsymbol{\rho}, \boldsymbol{\beta}; \mathbf{y}) \propto \sum_{i=1}^n |B_i| \exp(\mathbf{x}_{\boldsymbol{\rho}}(\mathbf{s}_i)'\boldsymbol{\beta}) - y_i \log |B_i| - y_i \mathbf{x}_{\boldsymbol{\rho}}(\mathbf{s}_i)'\boldsymbol{\beta}$

Two-part algorithm:

- \triangleright Condition on ρ and use IWLS to estimate β (with offset for $|B_i|$, ala GLMs)
- **DED** optimize for ρ numerically

4 0 8

Back to the Estimator

$$
\blacktriangleright \ \widehat{T}(A) = T(\mathcal{B}) + \widehat{T}(\mathcal{U})
$$

$$
\blacktriangleright \widehat{T}(\mathcal{U}) = \mu(\mathcal{U}) = \int_{\mathcal{U}} \lambda(\mathbf{u}|\hat{\boldsymbol{\rho}}, \hat{\boldsymbol{\beta}}) d\mathbf{u}
$$

$$
\blacktriangleright \lambda(\mathbf{u}|\hat{\boldsymbol{\rho}}, \hat{\boldsymbol{\beta}}) = \exp(\mathbf{x}_{\hat{\boldsymbol{\rho}}}(\mathbf{u})'\hat{\boldsymbol{\beta}})
$$

Approximate integral with dense grid of n_p points within $\mathbf{u}_i \in \mathcal{U}$.

$$
\widehat{T}(A) = T(B) + \sum_{j=1}^{n_p} |U_i| \exp(\mathbf{x}_{\hat{\boldsymbol{\rho}}}(\mathbf{u}_j)'\hat{\boldsymbol{\beta}})
$$

where $\left|U_i\right|$ is a small area around each \mathbf{u}_j

つひひ

4 0 8

Variance

 $\text{MSPE}(\hat{T}(A)) = E[(\hat{T}(A) - T(A))^{2}; \beta] = E[(\hat{T}(U) - T(U))^{2}; \beta]$ Note: as $\mathcal{U} \cap A \to \emptyset \Rightarrow \text{MSPE}(\hat{T}(A)) \to 0$ From IPP assumption: $\hat{T}(\mathcal{U})$ independent from $T(\mathcal{U})$. Assuming unbiasedness, $E[(\hat{T}(\mathcal{U})] = E[T(\mathcal{U})],$

$$
MSPE = var[T(\mathcal{U}); \beta] + var[\hat{T}(\mathcal{U}); \beta] = \mu(\mathcal{U}; \beta) + var[\hat{T}(\mathcal{U}); \beta]
$$

Now, what about $var[\hat{T}(U);\beta]$?

つQへ

Variance

Recall delta method result: $\text{var}(f(\mathbf{y})) \approx \mathbf{d}' \Sigma \mathbf{d}$

Jay M. Ver Hoef (2012) Who Invented the Delta Method? The American Statistician, 66:2, 124-127

where $var(\mathbf{y}) = \Sigma$ and $d_i = \partial f(\mathbf{y})/\partial y_i$

$$
d_i = \frac{\partial \hat{T}(\mathcal{U})}{\partial \beta_i} = \int_{\mathcal{U}} x_i(\mathbf{u}) \exp(\mathbf{x(u)'}\hat{\boldsymbol{\beta}}) d\mathbf{u} \approx \frac{|\mathcal{U}|}{n_p} \sum_{i=1}^{n_p} x_i(\mathbf{s}_i) \exp(\mathbf{x(s_i)'}\hat{\boldsymbol{\beta}})
$$

From Rathbun and Cressie, (1994), if $\hat{\beta}$ is MLE,

$$
\hat{\Sigma} = \left[\sum_{i=1}^n \int_{B_i} \mathbf{x(s)} \mathbf{x(s)}' \exp(\mathbf{x(s)}') \hat{\boldsymbol{\beta}}) d\mathbf{s}\right]^{-1} \approx \left[|\mathcal{B}| \sum_{i=1}^n \mathbf{x(s_i)} \mathbf{x(s_i)}' \exp(\mathbf{x(s_i)}') \hat{\boldsymbol{\beta}})\right]^{-1}
$$

if $|B_i| = |B| \forall i$.

Rathbun, S. L. and Cressie, N. (1994), "Asymptotic Properties of Estimators for the Parameters of Spatial Inhomogeneous Poisson Point Processes," Advances in Applied Probability, 26, 122-154.

つのへ

4 0 8

Summary

$$
\widehat{T}(A) = T(B) + \frac{|\mathcal{U}|}{n_p} \sum_{j=1}^{n_p} \exp(\mathbf{x}_{\widehat{\boldsymbol{\rho}}}(\mathbf{u}_j)'\widehat{\boldsymbol{\beta}})
$$

$$
\widetilde{\text{var}}(\widehat{T}(A)) = \frac{|\mathcal{U}|}{n_p} \sum_{j=1}^{n_p} \exp(\mathbf{x}_{\widehat{\boldsymbol{\rho}}}(\mathbf{u}_j)'\widehat{\boldsymbol{\beta}}) +
$$

$$
\mathbf{d}'\left[|B| \sum_{i=1}^{n} \mathbf{x}(\mathbf{s}_i) \mathbf{x}(\mathbf{s}_i)' \exp(\mathbf{x}(\mathbf{s}_i)'\widehat{\boldsymbol{\beta}})\right]^{-1} \mathbf{d}
$$

where

$$
d_i = \frac{|\mathcal{U}|}{n_p} \sum_{i=1}^{n_p} x_i(\mathbf{s}_i) \exp(\mathbf{x}(\mathbf{s}_i)'\hat{\boldsymbol{\beta}})
$$

×

 \leftarrow \Box \rightarrow

 \prec a 299

Þ

Introduction Model Inference Overdispersion Simulations Example Summary 000 00000 000000 0000 000000 000 \circ

Simulated Example

Simulated Example

True abundance was 1079 Estimated abundance was 1143 with standard error 62

Jay M. Ver Hoef Noaca National Marine Mammal Lab

4 D F

Residuals Plots

 \leftarrow \Box

Overdispersion Estimators

 \blacktriangleright The traditional estimator:

$$
\omega_{OD} = \max\left(1, \frac{1}{n-r} \sum_{i=1}^{n} \frac{(y_i - \phi_i)^2}{\phi_i}\right)
$$

where *r* is the rank of **X**.

 \triangleright Weighted regression estimator:

$$
\omega_{WR} = \max \left(1, \arg \min_{\omega} \sum_{i=1}^{n} \sqrt{\phi_i} [(y_i - \phi_i)^2 - \omega \phi_i]^2 \right),
$$

4 0 8

where $\sqrt{\phi_i}$ were the weights

Overdispersion Estimators

 \blacktriangleright Trimmed Mean:

$$
\omega_{TG}(p) = \max\left(1, \frac{1}{n - \lfloor np \rfloor - r} \sum_{i = \lfloor np \rfloor + 1}^{n} \frac{(y_{(i)} - \phi_{(i)})^2}{\phi_{(i)}}\right)
$$

where $0 \le p \le 1$, $y_{(i)}$ and $\phi_{(i)}$ are ordered values, and $\lfloor x \rfloor$ rounds *x* down to the nearest integer.

つひひ

4 0 8

[Introduction](#page-1-0) [Model](#page-4-0) [Inference](#page-9-0) **[Overdispersion](#page-15-0)** [Simulations](#page-19-0) [Example](#page-25-0) [Summary](#page-28-0)

Adjusted Variance Estimators

\n- $$
\widehat{\text{var}}_{OD}(\widehat{T}(A)) = \omega_{OD} \widehat{\text{var}}(\widehat{T}(A))
$$
\n- $\widehat{\text{var}}_{WR}(\widehat{T}(A)) = \omega_{WR} \widehat{\text{var}}(\widehat{T}(A))$
\n- $\widehat{\text{var}}_{TG}(\widehat{T}(A); p) = \omega_{TG}(p) \widehat{\text{var}}(\widehat{T}(A))$
\n- $\widehat{\text{var}}_{TL}(\widehat{T}(A); p) = \frac{|U|}{n_p} \sum_{j=1}^{n_p} \exp(\mathbf{x}_{\widehat{p}}(\mathbf{u}_j)'\widehat{\boldsymbol{\beta}}) \times \max(1, \omega_{TG}(p)I(\exp(\mathbf{x}(\mathbf{s}_j)'\widehat{\boldsymbol{\beta}}) \geq \phi_{(\lfloor np \rfloor)}) + (1 - p)\omega_{TG}(p) + p) \times$ \n $\mathbf{d}'\left[|B| \sum_{i=1}^{n} \mathbf{x}(\mathbf{s}_i) \mathbf{x}(\mathbf{s}_i)' \exp(\mathbf{x}(\mathbf{s}_i)'\widehat{\boldsymbol{\beta}})\right]^{-1} \mathbf{d}$ \n where $I(\cdot)$ is the indicator function
\n

 \leftarrow \Box

4 0 8

 \prec 一句 × Ξ **B** 299

4 0 8

 \prec 一句 × Ξ **B** 299

4 0 8

 \prec 一句 × Ξ **B** 299

4 0 8

 \prec 一句 × Ξ **B** 299

Effect of *p* in Trimmed Overdispersion Estimator

Jay M. Ver Hoef Noaca National Marine Mammal Lab

Real Example

Fitted Prediction Surface

4日)

Recall the Goals

An estimator that is:

- \triangleright fast to compute, robust, and requires few modeling decisions, similar to classical survey methods,
- \triangleright based only on counts within plots; actual spatial locations of animals are unknown,
- \triangleright for the actual number of seals, not the mean of some assumed process that generated the data,
- \blacktriangleright have a variance estimator with a population correction factor that shrinks to zero as the proportion of the study area that gets sampled goes to one,
- \blacktriangleright unbiased with valid confidence intervals,
- \triangleright able to accommodate nonstationary variance and excessive zeros throughout the area