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Background.

» Count data. Variance-mean ratio.
» Approaches: Poisson, Negative Binomial.
» Ordinal stereotype model.

Advantages of categorising count data into ordinal data.

Categorising count data: methodology.

Application
» Spider data (Van der Aart & Smeenk-Enserink, 1974).

Summary.



1. Count and Ordinal data

» Count data:

» Count the number times an event occurs, e.g. # particular species at
a certain site.

» Non-negative integers and zero being included or not (depending on
whether it is ecologically important).

» Counts may have no upper bound, or have a known maximum.

» Ordinal data:

» Answers on ordinal variable describing inherent order.

» The order in the response categories matters.

» For example, Braun-Blanquet scale is very common in vegetation
science or Likert scale in surveys.
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1. Count data. Variance-mean ratio

» Variance-mean ratio ( Var VMR). Stochastic scheme for

Mean’
classifying count data (Rogers, 1974, ch. 1)!:

» VMR>1 (variance > mean) = clustered point pattern.

» VMR=1 (variance=mean) = dispersion follows a random point
pattern.

» VMR<1 (variance < mean) = regular point pattern.

a. Clustered b. Random c. Regular

1. Rogers, A. Statistical Analysis of Spatial Dispersion: The Quadrat Method. Monographs in Spatial and

Environmental Systems Analysis. Pion, 1974.



1. Count data. Variance-mean ratio.

a. Clustered b. Random c. Regular

» (Clustered point pattern = prob. object being in quadrat linearly related to
7+ objects already there.
e.g. shoal of sardines = negative binomial distribution.

» Random point pattern = prob. object being in quadrat independent of the
7+ objects already there.
e.g. plants with well-dispersed seeds = Poisson distribution

» Regular point pattern = prob. object being in quadrat decreases linearly with
the # objects there.
e.g. gannet nests in a colony =- binomial distribution.



1. Count data. Variance-mean ratio

a. Clustered b. Random c. Regular

» Variance-mean relationship is a critical property of count data.

» Trends in location (mean abundance) may be confounded with
changes in dispersion (Warton et al., 2012)2

» One alternative to deal with VMR problem =- turn count data into
ordinal.

2. Warton, D. I., Wright, S. T., and Wang, Y. Distance-based multivariate analyses confound location and

dispersion effects. Methods in Ecology and Evolution, 3(1):89-101, 2012.



2. Advantages of categorising count data

» Possible drawbacks what could arise from using count data.
Highly sensitive to outliers = negative binomial.
Structurally exclude zero counts (e.g. hospital length of stay (in
days)) = zero-truncated models.
Excess of zero counts = hurdle models, zero-inflated models.
One data set with different levels of VMR =- apply different count
data models.

» Advantages of categorising count data into ordinal categories:

Less sensitive to outliers.

No affected by the omission of zeros in the data.

Excess of zero counts = Cumulative link random effects models =
more parsimonious (Agresti, 2010).

B Use of the same approach for different levels of VMR.
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1. Approaches

» Data represented as a matrix Y with dimensions n x p (n could be
sites, p could be spp.)

» Single-mode clustering and biclustering = Finite mixture models.

» Missing information: row/col membership = EM algor., RIMCMC
» Count data sets:

» Assumption of Poisson distribution (Pledger and Arnold, 2014)3

> Negative binomial distribution when overdispersion.

» Ordinal data sets (after categorising):
» Assumption of ordinal stereotype model (Ferndndez et al., 2014)*

3. Pledger, S. and Arnold, R. Multivariate methods using mixtures: Correspondence analysis, scaling and
pattern-detection. Computational Stat. and Data Analysis, 2014.

4. Ferndndez, D., Arnold, R., and Pledger, S. Mixture-based clustering for the ordered stereotype model.

Computational Stat. and Data Analysis, 2014.



3. Methodology. How Many Ordinal Categories?

Several ways of categorising:

» Simplest case: Using count data as ordinal categories (e.g.
(0,1,2,3) = {0,1,2,3}).

» Large counts. Use top-coded data (e.g. {0,1,24}).
{0,1+4}: presence-absence, extreme case.

» Equally spaced cut points (e.g. 0 —4,5—09,... or
0,1—9,10 — 99, ... with logarithmic scale).

» Replace count data by their ranks and cutting them into groups
based on percentiles.
- Percentiles are not strongly influenced by extreme values
- Can be calculated even if the counts are skewed.



3. Methodology. Categorising Based on Percentiles

Given count data {y;} (i=1,...,nand j=1,...,p).

Rescale each observation yj, so yi* € [0, 1].

]

Divide vector {y;'} into £ + 1 quantiles: Q©,..., Q.

o]

Recode each observation y,-?t as:

0 if yj' € [Q®, QW]
/
Yij =
k if yljt c (Q(k), (?(kJrl)]7

where (Q¥~1, Q] is the interval of values from vector y;" between the
(k —1)*™ and k™™ quantiles, for k =1,...,¢.

Each interval contains %% of the non-zero data.

Fit our ordinal mixture methodology to Y’.



3. Methodology. Categorising Based on Percentiles

Given count data {y;} (i=1,...,nand j=1,...,p).
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4. Application. Spider Dataset

Pardosa monticola - pin-stripe wolf spider, and it inhabits sand dunes in
the Netherlands.



4. Application. Spider Dataset

» “Spider” abundance data (Van der Aart & Smeenk, 1974).

> 12 spider species , 28 sites .

» Original data: Count data (species abundance at site).

» Ordinal data: 4 categories.

(0) None No data recorded
) (1) Low Species coverage is below 25%
Yi=\ (2) Medium  Species coverage is between 25% — 65%
(3) High Species coverage is higher than 65%

Table : Frequencies of spider abundance by site, in 4-level ordinal scale.

Ordinal scale 0 1 2 3 Total
Spider abundance  No data recorded Low  Medium High  Total
Frequency (y;) 154 66 56 60 336




4. Application. Spider Dataset

Blue line: Variance-mean ratio (sorted ascending) for the spider data set.
Orange dashed line: indicates no overdispersion.

Green arrows: Overdispersion (variance>mean) is observed in all the species.

Variance-Mean ratio
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4. Application. Spider Dataset

Scatter plot and histogram of the R = 3 fitted sites clusters {5(,-_)} from
the row clustering version of the stereotype model (1 + ¢i(cvr + 5;))-

Scatterplot Fitted Scores. Spider Data Histogram of Spider Data
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3. Result Comparison: Count data vs. Ordinal data

Cluster Results
Count data vs. Ordinal data



3. Result Comparison: Count data vs. Ordinal data

Table : Spider data set: Site clustering results for Poisson, NB and ordered
stereotype model.

Clustering (highest probability)
Groups Poisson NB [ Stereotype
RI {17,912, 13, 14, 25} {1-7,13,14} {1-7,13,14}
R2 {22-24,26-28} {9-12,22-28} {8,21-24,27,28}
R3 {8,15-21} {8,15-21} {9-12,15-20,25-26}




3. Results Column Clustering. Comparison

Site Cluster 1
Poisson NN .
Stereotype [N |
Sites 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
Site Cluster 2
Poisson N
Stereotype | | |
Sites 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
Site Cluster 3
Poisson ] I
Stereotype | | |
Sites 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

Figure : Spider data C=3: Poisson, Neg. Bin. and Ordinal Stereotype



3. Results Column Clustering. Comparison

PR Rl Site Cluster 1
Poisson _ I .
A
" | ! |
Stereotype ‘_ -
Sites 1 2 3~ 12-5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
Site Cluster 2 .—"'--"~.~
Poisson * -"
| . | -
Stereotype | _ -o
Sites 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 zz 23 24725 26 z7zs
SlteC‘ustd'z---."-
Poisson | ’ "
| ' .
. .
Stereotype . .
P
Sites 1234567s910111213141516171'819202122232425262728

Figure : Spider data C=3: Poisson, Neg. Bin. and Ordinal Stereotype



3. Results Column Clustering. Comparison

Site Cluster 1
Poisson GG I -
| |
Sterotype -
L.
Sites 1 2 3 4 5 6 7 829 10 11 12 A3 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
S mm=”
Site Cluster 2
Poisson -
] |
Stereotype m .
smm .
Sites 1 2 3 4 5 6 7 8;9 10 11 12 ,43 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
fmmm=”
Site Cluster 3
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| |
Stereotype [ -
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Figure : Spider data C=3: Poisson, Neg. Bin. and Ordinal Stereotype



3. Results Column Clustering. Comparison

Site Cluster 1
ammmmal -
{ _Poisson _ ‘— L
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Figure : Spider data C=3: Poisson, Neg. Bin. and Ordinal Stereotype



3. Results Column Clustering. Comparison

» Clustering measures:

» Variation of information (VI, Meila (2005)).
» Normalized information distance (NID, Kraskov et al. (2005)),
» Adjusted Rand index (ARI, Hubert et al. (1985))

» Range between (0,1).
» Large values indicate similarity of clustering.

Table : Spider data set: Clustering results for Poisson, NB, and stereotype
model. Stereotype is closer to NB than Poisson.

Clustering Comparison \ ARI 1-NVI 1-NID

Poisson vs. Stereotype 0.334 0.304 0.457
NB vs. Stereotype 0.465 0.423 0.590




5. Summary. Conclusions

» Features of categorising count data into ordinal data were shown.

> In our view, advantages:
» We do not have to decide among different parametric models for the
data. (i.e. it enables the inclusion of all of the different levels of
dispersion in one methodology.)

» Replacing high/low counts with "high/low" ordinal categories makes
the actual counts less influential in the model fitting.

» Saving in cost of sampling time in collecting only ordinal data
(sample more sites).

» Future research directions:
» Numerical experiment: Investigate the differences between recoded
and original count data.
» Developing a measure to quantify the loss of information.
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1. Approaches. Ordinal stereotype model

For example, Row clustered ordinal stereotype model:

log Plyj=k|ier]
Plyj=1|ier]

> = pk + oxlar + 5))

i=1,....n j=1,....p k=1,...,9 r=1,...,R<n

v

lk: cut points (nuisance parameters).

v

«,: effect of the row cluster r.

v

B;: effect of the columns.

> ¢k “score” for the response category k.

v

Including an increasing order constraint:
O=¢1 <pp<---<pg=1,

captures the ordinal nature of the outcomes.



