
Categorising Ecological Community Count Data

Daniel Fernández

Shirley Pledger

Victoria University of Wellington

The International Biometric Society Australasian Region Conference 2015

Hobart, Tasmania

Nov. 30th - Dec. 3rd, 2015



Outline

1 Background.
I Count data. Variance-mean ratio.
I Approaches: Poisson, Negative Binomial.
I Ordinal stereotype model.

2 Advantages of categorising count data into ordinal data.

3 Categorising count data: methodology.

4 Application
I Spider data (Van der Aart & Smeenk-Enserink, 1974).

5 Summary.



1. Count and Ordinal data

I Count data:
I Count the number times an event occurs, e.g. # particular species at

a certain site.
I Non-negative integers and zero being included or not (depending on

whether it is ecologically important).
I Counts may have no upper bound, or have a known maximum.

I Ordinal data:
I Answers on ordinal variable describing inherent order.
I The order in the response categories matters.
I For example, Braun-Blanquet scale is very common in vegetation

science or Likert scale in surveys.



1. Count data. Variance-mean ratio

I Variance-mean ratio
(

Var
Mean ,VMR

)
. Stochastic scheme for

classifying count data (Rogers, 1974, ch. 1)1:

I VMR>1 (variance > mean) ⇒ clustered point pattern.

I VMR=1 (variance=mean) ⇒ dispersion follows a random point
pattern.

I VMR<1 (variance < mean) ⇒ regular point pattern.

1. Rogers, A. Statistical Analysis of Spatial Dispersion: The Quadrat Method. Monographs in Spatial and

Environmental Systems Analysis. Pion, 1974.



1. Count data. Variance-mean ratio.

I Clustered point pattern ⇒ prob. object being in quadrat linearly related to
# objects already there.

e.g. shoal of sardines ⇒ negative binomial distribution.

I Random point pattern ⇒ prob. object being in quadrat independent of the
# objects already there.

e.g. plants with well-dispersed seeds ⇒ Poisson distribution

I Regular point pattern ⇒ prob. object being in quadrat decreases linearly with
the # objects there.

e.g. gannet nests in a colony ⇒ binomial distribution.



1. Count data. Variance-mean ratio

I Variance-mean relationship is a critical property of count data.

I Trends in location (mean abundance) may be confounded with
changes in dispersion (Warton et al., 2012)2

I One alternative to deal with VMR problem ⇒ turn count data into
ordinal.

2. Warton, D. I., Wright, S. T., and Wang, Y. Distance-based multivariate analyses confound location and

dispersion effects. Methods in Ecology and Evolution, 3(1):89-101, 2012.



2. Advantages of categorising count data

I Possible drawbacks what could arise from using count data.

1 Highly sensitive to outliers ⇒ negative binomial.
2 Structurally exclude zero counts (e.g. hospital length of stay (in

days)) ⇒ zero-truncated models.
3 Excess of zero counts ⇒ hurdle models, zero-inflated models.
4 One data set with different levels of VMR ⇒ apply different count

data models.

I Advantages of categorising count data into ordinal categories:

1 Less sensitive to outliers.
2 No affected by the omission of zeros in the data.
3 Excess of zero counts ⇒ Cumulative link random effects models ⇒

more parsimonious (Agresti, 2010).
4 Use of the same approach for different levels of VMR.



1. Approaches

I Data represented as a matrix Y with dimensions n × p (n could be
sites, p could be spp.)

I Single-mode clustering and biclustering ⇒ Finite mixture models.

I Missing information: row/col membership ⇒ EM algor., RJMCMC
I Count data sets:

I Assumption of Poisson distribution (Pledger and Arnold, 2014)3

I Negative binomial distribution when overdispersion.

I Ordinal data sets (after categorising):
I Assumption of ordinal stereotype model (Fernández et al., 2014)4

3. Pledger, S. and Arnold, R. Multivariate methods using mixtures: Correspondence analysis, scaling and

pattern-detection. Computational Stat. and Data Analysis, 2014.

4. Fernández, D., Arnold, R., and Pledger, S. Mixture-based clustering for the ordered stereotype model.

Computational Stat. and Data Analysis, 2014.
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3. Methodology. How Many Ordinal Categories?

Several ways of categorising:

I Simplest case: Using count data as ordinal categories (e.g.
(0, 1, 2, 3) ⇒ {0, 1, 2, 3}).

I Large counts. Use top-coded data (e.g. {0, 1, 2+}).
{0, 1+}: presence-absence, extreme case.

I Equally spaced cut points (e.g. 0− 4, 5− 9, . . . or
0, 1− 9, 10− 99, . . . with logarithmic scale).

I Replace count data by their ranks and cutting them into groups
based on percentiles.

- Percentiles are not strongly influenced by extreme values
- Can be calculated even if the counts are skewed.



3. Methodology. Categorising Based on Percentiles

Given count data {yij} (i = 1, . . . , n and j = 1, . . . , p).

1 Rescale each observation yij , so y st
ij ∈ [0, 1].

2 Divide vector {y st
ij } into ` + 1 quantiles: Q(0), . . . ,Q(`).

3 Recode each observation y st
ij as:

y ′ij =


0 if y st

ij ∈ [Q(0),Q(1)],

k if y st
ij ∈ (Q(k),Q(k+1)],

where (Q(k−1),Q(k)] is the interval of values from vector y st
ij between the

(k − 1)th and kth quantiles, for k = 1, . . . , `.
Each interval contains 100

`
% of the non-zero data.

4 Fit our ordinal mixture methodology to Y′.



3. Methodology. Categorising Based on Percentiles

Given count data {yij} (i = 1, . . . , n and j = 1, . . . , p).



4. Application. Spider Dataset

Pardosa monticola - pin-stripe wolf spider, and it inhabits sand dunes in
the Netherlands.



4. Application. Spider Dataset

I “Spider” abundance data (Van der Aart & Smeenk, 1974).

I 12 spider species , 28 sites .

I Original data: Count data (species abundance at site).

I Ordinal data: 4 categories.

yij =


(0) None No data recorded
(1) Low Species coverage is below 25%
(2) Medium Species coverage is between 25%− 65%
(3) High Species coverage is higher than 65%

Table : Frequencies of spider abundance by site, in 4-level ordinal scale.

Ordinal scale 0 1 2 3 Total

Spider abundance No data recorded Low Medium High Total

Frequency (yij) 154 66 56 60 336



4. Application. Spider Dataset

Blue line: Variance-mean ratio (sorted ascending) for the spider data set.
Orange dashed line: indicates no overdispersion.

Green arrows: Overdispersion (variance>mean) is observed in all the species.



4. Application. Spider Dataset

Scatter plot and histogram of the R = 3 fitted sites clusters {φ(i.)} from
the row clustering version of the stereotype model (µk + φk(αr + βj)).



3. Result Comparison: Count data vs. Ordinal data

Cluster Results
Count data vs. Ordinal data



3. Result Comparison: Count data vs. Ordinal data

Table : Spider data set: Site clustering results for Poisson, NB and ordered
stereotype model.

Groups
Clustering (highest probability)

Poisson NB Stereotype

R1 {1-7,9-12, 13, 14, 25} {1-7,13,14} {1-7,13,14}
R2 {22-24,26-28} {9-12,22-28} {8,21-24,27,28}
R3 {8,15-21} {8,15-21} {9-12,15-20,25-26}



3. Results Column Clustering. Comparison

Site Cluster 1

Poisson

Neg. Binomial

Stereotype

Sites 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

Site Cluster 2

Poisson

Neg. Binomial

Stereotype

Sites 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

Site Cluster 3

Poisson

Neg. Binomial

Stereotype

Sites 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

Figure : Spider data C=3: Poisson, Neg. Bin. and Ordinal Stereotype
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3. Results Column Clustering. Comparison

I Clustering measures:
I Variation of information (VI, Meila (2005)).
I Normalized information distance (NID, Kraskov et al. (2005)),
I Adjusted Rand index (ARI, Hubert et al. (1985))

I Range between (0,1).

I Large values indicate similarity of clustering.

Table : Spider data set: Clustering results for Poisson, NB, and stereotype
model. Stereotype is closer to NB than Poisson.

Clustering Comparison ARI 1-NVI 1-NID

Poisson vs. Stereotype 0.334 0.304 0.457
NB vs. Stereotype 0.465 0.423 0.590



5. Summary. Conclusions

I Features of categorising count data into ordinal data were shown.

I In our view, advantages:
I We do not have to decide among different parametric models for the

data. (i.e. it enables the inclusion of all of the different levels of
dispersion in one methodology.)

I Replacing high/low counts with ”high/low“ ordinal categories makes
the actual counts less influential in the model fitting.

I Saving in cost of sampling time in collecting only ordinal data
(sample more sites).

I Future research directions:
I Numerical experiment: Investigate the differences between recoded

and original count data.
I Developing a measure to quantify the loss of information.
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The End

Thanks for listening!!!
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1. Approaches. Ordinal stereotype model

For example, Row clustered ordinal stereotype model:

log

(
P [yij = k | i ∈ r ]

P [yij = 1 | i ∈ r ]

)
= µk + φk(αr + βj)

i = 1, . . . , n j = 1, . . . , p k = 1, . . . , q r = 1, . . . ,R < n

I µk : cut points (nuisance parameters).

I αr : effect of the row cluster r .

I βj : effect of the columns.

I φk : “score” for the response category k.

I Including an increasing order constraint:

0 = φ1 ≤ φ2 ≤ · · · ≤ φq = 1 ,

captures the ordinal nature of the outcomes.


