Biometrics-by-the-Harbour, Hobart, 2015

Longitudinal data with outcome-related sampling

Alastair Scott & Chris Wild

Department of Statistics University of Auckland

(work with John Neuhaus & Ross Boylan, UCSF, Yannan Jiang, UoA)

ADHD (Attention Deficit Hyperactivity Disorder) study - Hartung et al. (2002)

- Interested in time course of Y = ADHD in children & association with X-variables
- Y = ADHD relatively rare so used outcome-related design
- Case-control sampling on Z = "ADHD suspected":
 - Suspicion-cases: referred because ADHD suspected by teacher or parent
 - ▶ Suspicion-controls: sample of children not so suspected
- 138 cases, 117 controls followed annually for up to 8 visits
 - ▶ Y = "actual" ADHD status determined at each visit (Am. Psych. Assoc. criteria)
 - Z = "ADHD suspected" strongly related to ADHD at 1st visit but not a perfect predictor
- Call sampling on variable(s) Z related to Y (& maybe X) "outcome-related".

Osteoarthritis Initiative (OAI))

- A multi-centre longitudinal study of knee osteoarthritis (OA).
 - objective is to understand risk factors for OA and OA progression.
- Data gathered from 4796 men and women aged 45-79 years. Includes:
 - clinical evaluation data;
 - a biospecimen repository;
 - radiological images (x-ray and MRI)
- MRIs yield both binary and continuous measurements of OA status and are more accurate, but more expensive, than X-rays.
 - To reduce cost, investigators want to select a subset of longitudinal MRIs to evaluate based on X-ray and clinical data (e.g. pain).
- Sets of selected longitudinal MRIs form an outcome-related cluster sample.

Sacramento Area Latino Study on Aging (SALSA))

- A study of elderly Mexican-American living near Sacramento
 - objective is to understand risk factors for changes in cognitive functioning and dementia.
- Data gathered every 12 months for up to 7 years from 1735 men and women. Includes:
 - cognitive function (3MSE);
 - physical and quality-of-life measurements;
 - stored blood samples
- Interested in levels of beta-amyloid (a protein fragment that may cause Alzheimer's disease) in the blood samples
 - expensive so only measure for a targeted subset.

Notation and set up

- ullet We have longitudinal or clustered responses Y_{ij} and covariates $oldsymbol{x}_{ij}$:
 - ▶ *i* indexes subjects (clusters) (i = 1, ..., m)
 - ▶ *j* indexes units within subjects (clusters) $(j = 1, ..., n_i)$,
- Also have auxiliary design variables $Z_i = (Z_{i1}, \dots, Z_{ik_i})$ associated with Y_i and possibly x_i
 - ▶ Choose i^{th} subject (cluster) for study with probability based on Z_i
- Objective: to assess the individual-specific (within-subject or within-cluster) assoc. of Y with X and also to examine within-subject aggregation.
 - We will use random effects models (generalized linear mixed models)
 - Schildcrout and Rathouz (2010) estimate population-averaged effects using estimating equation methods

Possible approaches

- Semi-parametric likelihood. This leads to efficient estimators, but
 - needs pr(selection | Y, X), and this needs a model for the conditional distribution of Z given Y and X
 - outside the linear case, can only handle a small number of random effects because of computational constraints
- Use sample survey methods.
 - e.g. in the ADHD study, we have a simple stratified cluster sample with strata based on the design variable Z
 - could use
 - * weighted pseudo-likelihood
 - * weighted composite likelihood

Semiparametric Approach

- We have a cohort of N clusters with values (z_i, y_i, x_i) , drawn from some joint distribution
- The model of interest is $f(y \mid x; \theta)$ (in the process that generated the cohort)
- Have information on all z_i s (which could include elements of y_i and/or x_i). Based upon z_i , we either
 - observe remaining components of (y_i, x_i) (set $R_i = 1$)
 - or do not (set $R_i = 0$)
 - the marginal distribution of R_i contains no information about the parameters of interest

Conditional Maximum Likelihood

The conditional MLE is obtained by solving

$$S_0(\theta, \pi) = \sum_{i}^{N} R_i \frac{\partial \log f(y_i|x_i, R_i = 1; \theta)}{\partial \theta} = 0,$$

where $f(y_i|x_i, R_i = 1; \theta)$ is the conditional density of y_i in the sample:

$$f(\mathbf{y}_i|\mathbf{x}_i, R_i = 1; \boldsymbol{\theta}) = \pi(\mathbf{x}_i, \mathbf{y}_i) f(\mathbf{y}_i|\mathbf{x}_i; \boldsymbol{\theta}) / \pi(\mathbf{x}_i; \boldsymbol{\theta}).$$

Here

- $\qquad \qquad \pi(\mathbf{x}_i, \mathbf{y}_i) = \Pr(R_i = 1 | \mathbf{x}_i, \mathbf{y}_i),$
- $\qquad \qquad \pi(\mathbf{x}_i; \boldsymbol{\theta}) = \Pr(R_i = 1 | \mathbf{x}_i) = \int \pi(\mathbf{x}_i, \mathbf{y}) f(\mathbf{y} | \mathbf{x}_i; \boldsymbol{\theta}) d\mathbf{y}.$

Conditional Maximum Likelihood

The conditional MLE is obtained by solving

$$\mathbf{S}_0(\boldsymbol{\theta}, \boldsymbol{\pi}) = \sum_{i}^{N} R_i \frac{\partial \log f(\mathbf{y}_i | \mathbf{x}_i, R_i = 1; \boldsymbol{\theta})}{\partial \boldsymbol{\theta}} = 0,$$

where $f(y_i|x_i, R_i = 1; \theta)$ is the conditional density of y_i in the sample:

$$f(\mathbf{y}_i|\mathbf{x}_i, R_i = 1; \boldsymbol{\theta}) = \pi(\mathbf{x}_i, \mathbf{y}_i) f(\mathbf{y}_i|\mathbf{x}_i; \boldsymbol{\theta}) / \pi(\mathbf{x}_i; \boldsymbol{\theta}).$$

Here

- $\qquad \qquad \pi(\mathbf{x}_i, \mathbf{y}_i) = \Pr(R_i = 1 | \mathbf{x}_i, \mathbf{y}_i),$
- $\qquad \qquad \pi(\mathbf{x}_i; \boldsymbol{\theta}) = \Pr(R_i = 1 | \mathbf{x}_i) = \int \pi(\mathbf{x}_i, \mathbf{y}) f(\mathbf{y} | \mathbf{x}_i; \boldsymbol{\theta}) d\mathbf{y}.$
- Note that calculating $\pi(x_i, y_i)$ may need a model for $f(z \mid x, y)$.

Known selection probabilities

- If the $\pi(x_i, y_i)$ s are known for all the sampled units, we can use standard likelihood theory to show that, under suitable conditions, $\widehat{\theta}$, the solution to $S_0(\widehat{\theta}) = 0$:
 - is consistent and asymptotically normal
 - lacktriangledown has asymptotic covariance matrix $m{\mathcal{I}}_{00}^{-1}$ where $m{\mathcal{I}}_{00}=E\left\{-\partial \mathbf{S}_0/\partial m{ heta}^T
 ight\}$
- Note that S₀ only involves the sampled units
 - ignores any information that we have for the whole cohort

Unknown π_i s

- If π_i is not known, we have to estimate it from the full cohort data.
- Suppose we fit a binary regression model, $\pi(z_i; \alpha)$ say, for $Pr(R_i = 1)$
 - Let $S_1(\alpha)$ be the corresponding score function
 - **E**stimating θ (and α) now equivalent to solving

$$S(\theta, \alpha) = \begin{pmatrix} S_0(\theta, \alpha) \\ S_1(\alpha) \end{pmatrix} = 0$$

Unknown π_i s

- If π_i is not known, we have to estimate it from the full cohort data.
- Suppose we fit a binary regression model, $\pi(z_i; \alpha)$ say, for $Pr(R_i = 1)$
 - Let $S_1(\alpha)$ be the corresponding score function
 - **E**stimating θ (and α) now equivalent to solving

$$S(\theta, \alpha) = \begin{pmatrix} S_0(\theta, \alpha) \\ S_1(\alpha) \end{pmatrix} = 0$$

Some notation: let

$$\mathcal{I} = E \left\{ \left(\begin{array}{cc} -\partial \mathbf{S}_0 / \partial \boldsymbol{\theta}^T & -\partial \mathbf{S}_0 / \partial \boldsymbol{\alpha}^T \\ 0 & -\partial \mathbf{S}_1 / \partial \boldsymbol{\alpha}^T \end{array} \right) \right\} = \left(\begin{array}{cc} \mathcal{I}_{00} & \mathcal{I}_{01} \\ 0 & \mathcal{I}_{11} \end{array} \right)$$

Then we can show that

$$\textit{ACov}\{\widehat{\boldsymbol{\theta}}\} = \boldsymbol{\mathcal{I}}_{00}^{-1} - \boldsymbol{\mathcal{I}}_{00}^{-1} \boldsymbol{\mathcal{I}}_{01} \boldsymbol{\mathcal{I}}_{11}^{-1} \boldsymbol{\mathcal{I}}_{01}^{\mathsf{T}} \boldsymbol{\mathcal{I}}_{00}^{-1}.$$

Then we can show that

$$ACov\{\widehat{\boldsymbol{\theta}}\} = \boxed{ \boldsymbol{\mathcal{I}}_{00}^{-1} } - \boldsymbol{\mathcal{I}}_{00}^{-1} \boldsymbol{\mathcal{I}}_{01} \boldsymbol{\mathcal{I}}_{11}^{-1} \boldsymbol{\mathcal{I}}_{01}^{T} \boldsymbol{\mathcal{I}}_{00}^{-1}.$$

Using the true values of π_i

Then we can show that

Using the true values of π_i

Effect of estimating π_i

Then we can show that

$$ACov\{\widehat{\theta}\} = \boxed{ \mathcal{I}_{00}^{-1} } - \boxed{ \mathcal{I}_{00}^{-1} \mathcal{I}_{01} \mathcal{I}_{11}^{-1} \mathcal{I}_{00}^T \mathcal{I}_{00}}$$
 Using the true values of π_i

Effect of estimating π_i

- The value of $ACov\{\widehat{\theta}\}$ is **smaller** when we use estimated selection probabilities than when we use the true values!
- Although it may look paradoxical at first, by using the **estimated** πs we are actually using more information thus **better estimates**:
 - essentially equivalent to calibration on z component totals in survey sampling

Note that

$$\mathsf{ACov}\{\widehat{m{ heta}}\} = m{\mathcal{I}}_{00}^{-1}\left(m{\mathcal{I}}_{00} - m{\mathcal{I}}_{01}m{\mathcal{I}}_{11}^{-1}m{\mathcal{I}}_{01}^{\mathsf{T}}
ight)m{\mathcal{I}}_{00}^{-1} = m{\mathcal{I}}_{00}^{-1}m{\mathcal{C}}_{R}m{\mathcal{I}}_{00}^{-1}$$

- C_R is the cov. matrix of resid. vector when S_0 is regressed on S_1 , i.e. $C_R = \inf_{\mathcal{R}} \operatorname{Cov} \{S_0 BS_1\};$
- Adding any extra variables to inclusion model never increases, & may decrease, C_R even if the π_i s do not actually depend on them:
- Size of reduction depends on the relationship between the score for the added variable and $S_0(\theta_0, \alpha_0)$ and not at all on the strength of its effect on the inclusion probabilities;
- If z has finite support then, most efficient to fit a saturated model for π .

Improving estimates

We can do even better. The conditional log-likelihood has the form

$$\ell_c(\boldsymbol{\theta}, \boldsymbol{\pi}) = \sum_{i}^{N} R_i \log f(\mathbf{y}_i | \mathbf{x}_i, R_i = 1; \boldsymbol{\theta}, \boldsymbol{\pi})$$

- If we replace π by the modelled value $\pi(\alpha)$, this conditional log-likelihood becomes a function of α as well as θ
 - lacktriangledown the corresponding score function, $ilde{\mathbf{S}}(m{ heta},m{lpha})=rac{\partial\ell(m{ heta},m{lpha})}{\partialm{lpha}}$, carries extra information
 - ▶ Replace $S_1(\alpha)$ by $S_1(\alpha) + \lambda \tilde{S}(\theta, \alpha)$ (optimal $\lambda = -1$).
- This gives the fully efficient semi-parametric estimator when z can take only a finite number of values
 - Can give useful improvements more generally.

Generalized linear mixed models

• Given vector of random cluster-level parameters b_i , conditional density of Y_{ij} (for the j^{th} unit in i^{th} cluster) is of the form

$$f_Y(y_{ij} \mid \boldsymbol{b}_i, \boldsymbol{x}_{ij}) = \exp[\{y_{ij}\Delta_{ij} - c(\Delta_{ij})\}\phi + d(y_{ij}, \phi)],$$

where c and d are known functions, ϕ is scale parameter and Δ_{ij} is a function of $\mu_{ij} = E(Y_{ij} \mid \mathbf{b}_i, \mathbf{w}_{ij}, \mathbf{x}_{ij})$ depending on the x_{ij} s through

$$\mu_{ij} = g^{-1}(\boldsymbol{w}_{ij}^T \boldsymbol{b}_i + \boldsymbol{x}_{ij}^T \boldsymbol{\beta}) \equiv g^{-1}(\eta_{ij}).$$

- $m{x}_{ij}^T$ and $m{w}_{ij}^T$ are covariate row vectors relating the fixed and random effects, resp
- Assume that Y_{i1}, \ldots, Y_{in_i} are independent, given the random cluster effects \boldsymbol{b}_i .
- Simulations focus on models with random intercepts and slopes.

Simulations

- Simulations based on the data from ADHD study
 - longitudinal binary data generated from logistic regression models
 - ★ Time (visit) variable x_t over 8 (or 4) time points
 - ★ a continuous x-variable and a binary x-variable unrelated to time
 - \star an auxiliary variable Z=1 or Z=0
 - \triangleright simulations generated populations of 5000 subjects with 500 sampled on value of Z
- 2 main sets of simulations:
 - random intercepts only
 - using both random intercepts and slopes
- Results:
 - semi-parametric maximum likelihood performance as hoped (very low bias, excellent coverage)
 - standard mixed effects logistic regression uncorrected for biased sampling led to large biases for all parameters

ADHD example

- Fitted three models
 - a marginal model with no random effects
 - random intercepts only
 - using both random intercepts and slopes
- All models included fixed effects for
 - visit number,
 - sex,
 - ethnicity,
 - + interactions

Log Odds of ADHD for Reference Group

Log Odds of ADHD for Reference Group

Log Odds of ADHD

Some questions

- How can we manage the computation with more random effects in nonlinear models?
 - better numerical techniques (adaptive Gaussian quadrature, etc)?
 - Could a weighted survey approach do better?
- How do we choose a good design?
 - How should we use X-rays, pain, mobility etc to decide which MRIs to look at in the Osteoarthritis Initiative?
 - How should we use measures of cognitive function, quality of life etc to decide when to measure beta-amyloid levels in SALSA?