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Cytosines in a genome, particularly those in the
combination CpG, can undergo an epigenetic
change called methylation
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Methylation patterns

e can play a role in cell development

 can play arole in determining phenotype

e canh be aresponse to environmental factors

e can change from cell-type to cell-type in an organism



A population of cells of a given type in a given organism defines a
probability distribution over methylation patterns

e.g. for 3 nearby CpG sites
k pattern™  Prob(K=k) =6,
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Methylation patterns are measured directly in
the laboratory via

Bisulphite Conversion
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sequence & map to
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Workﬂow DNA Extraction
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Table of counts for each pattern



Workﬂow DNA Extraction

1 Incomplete Conversion

—

Bisulphite Conversion
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We have developed the R Bioconductor Package MPFE:

— Methylation Patterns Frequency Estimation

— Inputs (n cytosines)
* A table of methylation pattern counts y,, where 1 <k < 2"
labels the 2" different methylation patterns

* The non-conversion rate ¢
* The sequencing error rate #, either global or site-dependent
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We have developed the R Bioconductor Package MPFE:

— Methylation Patterns Frequency Estimation

— Inputs (n cytosines)
* A table of methylation pattern counts y,, where 1 <k < 2"
labels the 2" different methylation patterns

* The non-conversion rate ¢
* The sequencing error rate #, either global or site-dependent

— Outputs

* Atable of patterns and their estimated frequencies 0,

* List of spurious patterns called

* Plots comparing the observed and estimated frequencies
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Synthetic Data
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proportion

Biological Data

(honeybee worker brains — gene GB17113)
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patterns, m;

n =14 CpG sites

total number of reads = 2347
non-conversion rate € = 0.01
sequencing error rate n = 0.02

160 patterns, 47 are called spurious
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How does it work?

Given:
 nCpGsites, k=1, 2, ..., 2" possible patterns
* true distribution over patterns to be estimated

Pr(K = k) =6,

* non-conversion rate € and read error rate

The probability of a true pattern & registering as pattern /
IS

Pr(L=I\K =k)=M,
where the 2"x2" matrix M is (after a little bit of algebra)

l-e—n+2¢ E+n-2¢
M-EQE®..®E  E-= (il A
\ - Y n 1-n
n times




Then the probability a read registers as pattern number /
IS

Pr(L=1)= EPr(K =k)Pr(L=1|K =k)= szMkl

The distribution of read counts Y, Y., ..., Y,., for patterns
[=1, ..., 2" out of a total of N reads is a multinomial
distribution:

Pr(Y = y/6) - ﬁ(EQ Mkz)

Y1y, l.



... Which enables a maximum likelihood estimate of the underlying
distribution 6 from

. .
L(O]Y =y)= log(Pr(Y = y‘H)) s Eyk log EHkMkl
[=1 k=1

subject to the important constraints
27’1
Y6,=1, 6,=0.
k=1

 Implemented in R using the function constrOptim()

* For realistic data the estimate of 8, is generally on the boundary
of the constraint 6, > 0. l.e. there are many ‘observed’ patterns
which turn out to be spurious.
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Abstract

Background: Bisulphite sequencing enables the detection of cytosine methylation. The sequence of the
methylation states of cytosines on any given read forms a methylation pattern that carries substantially more

information than merely studying the average methylation level at individual positions. In order to understand better
the complexity of DNA methylation landscapes in biological samples, it is important to study the diversity of these
methylation patterns. However, the accurate quantification of methylation patterns is subject to sequencing errors

the true underlying distribution of methylation patterns.

and spurious signals due to incomplete bisulphite conversion of cytosines.

Results: A statistical model is developed which accounts for the distribution of DNA methylation patterns at any
given locus. The model incorporates the effects of sequencing errors and spurious reads, and enables estimation of

Conclusions: Calculation of the estimated distribution over methylation patterns is implemented in the R
Bioconductor package MPFE. Source code and documentation of the package are also available for download at
http://bioconductor.org/packages/3.0/bioc/html/MPFE.html.

Keywords: DNA methylation, Bisulfite sequencing, DNA methylation patterns, Epiallele

Background

Epigenetic regulations are involved in a broad range of
biological processes, including development, tissue home-
ostasis, learning and memory, as well as various diseases
such as obesity and cancer [1-3].

DNA methylation is one of the best studied epigenetic
molecular mechanisms. It consists of the addition of a
methyl group to the cytosine residues (C) of a DNA
molecule. In animals, DNA methylation usually takes
place in the CpG context: cytosines followed by a guanine
(G) residue.

DNA methvlation modulates gene expression through

The diverse and subtle effects of DNA methylation
enable a given genome to produce different phenotypic
outputs as part of a developmental program or in response
to environmental factors. This has fundamental implica-
tions at the organismal level, where DNA methylation
plays an important role in phenotypic plasticity [6]. This
is also important at the cellular level to create diverse cell
types, tissues and organs all based on the same genome.
DNA methylation patterns can thus change from one cell
type to another or within a cell under different conditions
[71.

The diversity of methvlation patterns in a sample can be
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