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...ATCCTACGTTAGCTTAGCTGTCGTTAGGTGCTCGTA...	
  

Cytosines	
  in	
  a	
  genome,	
  par#cularly	
  those	
  in	
  the	
  
combina#on	
  CpG,	
  can	
  undergo	
  an	
  epigene#c	
  
change	
  called	
  methyla(on	
  
	
  
	
  
	
  
	
  
	
  
	
  
Methyla#on	
  pa2erns	
  
	
  

•  can	
  play	
  a	
  role	
  in	
  cell	
  development	
  
•  can	
  play	
  a	
  role	
  in	
  determining	
  phenotype	
  
•  can	
  be	
  a	
  response	
  to	
  environmental	
  factors	
  	
  
•  can	
  change	
  from	
  cell-­‐type	
  to	
  cell-­‐type	
  in	
  an	
  organism	
  

(methylated)	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (not	
  methylated)	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (methylated)	
  



A	
  popula#on	
  of	
  cells	
  of	
  a	
  given	
  type	
  in	
  a	
  given	
  organism	
  defines	
  a	
  
probability	
  distribu#on	
  over	
  methyla#on	
  pa2erns	
  
	
  
e.g.	
  for	
  3	
  nearby	
  CpG	
  sites	
  	
  
	
  

k 	
  	
  	
  	
  	
  pa2ern*	
  	
  	
  	
  	
  	
  	
  	
  Prob(K = k) = θk   
	
  

1 	
   	
  0	
  0	
  0 	
   	
   	
   	
  0.72	
  
2 	
   	
  0	
  0	
  1 	
   	
   	
   	
  0.12	
  
3 	
   	
  0	
  1	
  0 	
   	
   	
   	
  0.00	
  
4 	
   	
  0	
  1	
  1 	
   	
   	
   	
  0.00	
  
5 	
   	
  1	
  0	
  0 	
   	
   	
   	
  0.10	
  
6 	
   	
  1	
  0	
  1 	
   	
   	
   	
  0.00	
  
7 	
   	
  1	
  1	
  0 	
   	
   	
   	
  0.01	
  
8 	
   	
  1	
  1	
  1 	
   	
   	
   	
  0.05	
  
	
  

	
  *	
  0	
  =	
  unmethyated 	
  1	
  =	
  methylated	
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Methyla#on	
  pa2erns	
  are	
  measured	
  directly	
  in	
  
the	
  laboratory	
  via	
  

	
  	
  

Bisulphite	
  Conversion	
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m	
  

Bisulphite	
  Treatment	
  

Pa2ern:	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  0	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  1	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  0	
  

sequence	
  &	
  map	
  to	
  
reference	
  genome	
  



Bisulphite	
  Conversion	
  

Sequencing	
  

Mapping	
  to	
  reference	
  

Workflow	
   DNA	
  Extrac#on	
  

PCR	
  Amplifica#on	
  

Table	
  of	
  counts	
  for	
  each	
  pa2ern	
  



Bisulphite	
  Conversion	
  

Sequencing	
  

Mapping	
  to	
  reference	
  

Workflow	
   DNA	
  Extrac#on	
  

Sequencing	
  Errors	
  

Incomplete	
  Conversion	
  

PCR	
  Amplifica#on	
  

Table	
  of	
  counts	
  for	
  each	
  pa2ern	
  



We	
  have	
  developed	
  the	
  R	
  Bioconductor	
  Package	
  MPFE:	
  
	
  

– Methyla#on	
  Pa2erns	
  Frequency	
  Es#ma#on	
  
	
  

–  Inputs	
  (n cytosines)	
  
•  A	
  table	
  of	
  methyla#on	
  pa2ern	
  counts	
  yk,	
  where	
  1 ≤ k ≤ 2n 
labels	
  the	
  2n	
  different	
  methyla#on	
  pa2erns	
  

•  The	
  non-­‐conversion	
  rate	
  ε	
  	
  
•  The	
  sequencing	
  error	
  rate	
  η,	
  either	
  global	
  or	
  site-­‐dependent	
  	
  
	
  

	
  
	
  	
  



We	
  have	
  developed	
  the	
  R	
  Bioconductor	
  Package	
  MPFE:	
  
	
  

– Methyla#on	
  Pa2erns	
  Frequency	
  Es#ma#on	
  
	
  

–  Inputs	
  (n cytosines)	
  
•  A	
  table	
  of	
  methyla#on	
  pa2ern	
  counts	
  yk,	
  where	
  1 ≤ k ≤ 2n 
labels	
  the	
  2n	
  different	
  methyla#on	
  pa2erns	
  

•  The	
  non-­‐conversion	
  rate	
  ε	
  	
  
•  The	
  sequencing	
  error	
  rate	
  η,	
  either	
  global	
  or	
  site-­‐dependent	
  	
  
	
  

–  Outputs	
  
•  A	
  table	
  of	
  pa2erns	
  and	
  their	
  es#mated	
  frequencies	
  θk	
  	
  	
  
•  List	
  of	
  spurious	
  pa2erns	
  called	
  
•  Plots	
  comparing	
  the	
  observed	
  and	
  es#mated	
  frequencies	
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Synthe#c	
  Data	
  

n	
  =	
  6	
  CpG	
  sites	
  
total	
  number	
  of	
  reads	
  =	
  2000	
  
non-­‐conversion	
  rate	
  ε	
  =	
  0.008	
  
sequencing	
  error	
  rate	
  η	
  =	
  0.005	
  
25	
  pa2erns,	
  9	
  are	
  called	
  spurious	
  	
  



Biological	
  Data	
  	
   	
  (honeybee	
  worker	
  brains	
  –	
  gene	
  GB17113)	
  

n	
  =	
  14	
  CpG	
  sites	
  
total	
  number	
  of	
  reads	
  =	
  2347	
  
non-­‐conversion	
  rate	
  ε	
  =	
  0.01	
  
sequencing	
  error	
  rate	
  η	
  =	
  0.02	
  
160	
  pa2erns,	
  47	
  are	
  called	
  spurious	
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Given:	
  	
  
•  n	
  CpG	
  sites,	
  k = 1, 2, ..., 2n possible	
  pa2erns	
  
•  true	
  distribu#on	
  over	
  pa2erns	
  to	
  be	
  es#mated	
  

•  non-­‐conversion	
  rate	
  ε	
  and	
  read	
  error	
  rate	
  η 

The	
  probability	
  of	
  a	
  true	
  pa2ern	
  k	
  registering	
  as	
  pa2ern	
  l	
  	
  
is	
  	
  
	
  
	
  
where	
  the	
  2n×2n	
  	
  matrix	
  M	
  is	
  (afer	
  a	
  li2le	
  bit	
  of	
  algebra)	
  	
  

	
  

Pr(K = k) =θk

Pr(L = l K = k) =Mkl

M = E⊗ E⊗K⊗ E,         E =
1−ε −η + 2εη ε +η − 2εη

η 1−η

#

$
%
%

&

'
(
(

How	
  does	
  it	
  work?	
  

n #mes	
  



Then	
  the	
  probability	
  a	
  read	
  registers	
  as	
  pa2ern	
  number	
  l	
  
is	
  
	
  
	
  
	
  
	
  
	
  
	
  
The	
  distribu#on	
  of	
  read	
  counts	
  Y1, Y2, ..., Y2^n for	
  pa2erns	
  
l = 1, ..., 2n out	
  of	
  a	
  total	
  of	
  N	
  reads	
  is	
  a	
  mul#nomial	
  
distribu#on:	
  	
  

Pr(L = l) = Pr(K = k)Pr(L = l K = k)
k=1

2n

∑ = θkMkl
k=1

2n

∑

Pr Y = y θ( ) = N!
y1!y2 !...y2n !

θkMkl
k=1

2n

∑
"

#
$$

%

&
''

l=1

2n

∏
yl



...	
  which	
  enables	
  a	
  maximum	
  likelihood	
  es#mate	
  of	
  the	
  underlying	
  
distribu#on	
  θ	
  from	
  
	
  
	
  
	
  
	
  
subject	
  to	
  the	
  important	
  constraints	
  
	
  
	
  
	
  
	
  
	
  
•  Implemented	
  in	
  R	
  using	
  the	
  func#on	
  constrOp#m()	
  
•  For	
  realis#c	
  data	
  the	
  es#mate	
  of	
  θk	
  is	
  generally	
  on	
  the	
  boundary	
  

of	
  the	
  constraint	
  θk ≥ 0.	
  I.e.	
  	
  there	
  are	
  many	
  ‘observed’	
  pa2erns	
  
which	
  turn	
  out	
  to	
  be	
  spurious.	
  	
  

L θ Y = y( ) = log Pr Y = y θ( )( )∝ yk
l=1

2n

∑ log θkMkl
k=1

2n

∑
#

$
%%

&

'
((

θk =1,      
k=1

2n

∑ θk ≥ 0.
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Synthe#c	
  Data	
  

n	
  =	
  6	
  CpG	
  sites	
  
total	
  number	
  of	
  reads	
  =	
  2000	
  
non-­‐conversion	
  rate	
  ε	
  =	
  0.008	
  
sequencing	
  error	
  rate	
  η	
  =	
  0.005	
  
25	
  pa2erns,	
  9	
  are	
  called	
  spurious	
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n	
  =	
  6	
  CpG	
  sites	
  
total	
  number	
  of	
  reads	
  =	
  2000	
  
non-­‐conversion	
  rate	
  ε	
  =	
  0.008	
  
sequencing	
  error	
  rate	
  η	
  =	
  0.005	
  
25	
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  9	
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  called	
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Spurious	
  pa2erns	
  on	
  
the	
  boundary	
  of	
  the	
  
constraint	
  region.	
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Estimation of the methylation pattern
distribution from deep sequencing data
Peijie Lin1, Sylvain Forêt2, Susan R Wilson1,3 and Conrad J Burden1*

Abstract
Background: Bisulphite sequencing enables the detection of cytosine methylation. The sequence of the
methylation states of cytosines on any given read forms a methylation pattern that carries substantially more
information than merely studying the average methylation level at individual positions. In order to understand better
the complexity of DNA methylation landscapes in biological samples, it is important to study the diversity of these
methylation patterns. However, the accurate quantification of methylation patterns is subject to sequencing errors
and spurious signals due to incomplete bisulphite conversion of cytosines.

Results: A statistical model is developed which accounts for the distribution of DNA methylation patterns at any
given locus. The model incorporates the effects of sequencing errors and spurious reads, and enables estimation of
the true underlying distribution of methylation patterns.

Conclusions: Calculation of the estimated distribution over methylation patterns is implemented in the R
Bioconductor package MPFE. Source code and documentation of the package are also available for download at
http://bioconductor.org/packages/3.0/bioc/html/MPFE.html.

Keywords: DNA methylation, Bisulfite sequencing, DNA methylation patterns, Epiallele

Background
Epigenetic regulations are involved in a broad range of
biological processes, including development, tissue home-
ostasis, learning and memory, as well as various diseases
such as obesity and cancer [1-3].
DNA methylation is one of the best studied epigenetic

molecular mechanisms. It consists of the addition of a
methyl group to the cytosine residues (C) of a DNA
molecule. In animals, DNA methylation usually takes
place in the CpG context: cytosines followed by a guanine
(G) residue.
DNA methylation modulates gene expression through

a variety of mechanisms. In vertebrates, methylation in
the promoter region usually has a repressive effect on
transcription initiation. By contrast, methylation of gene
bodies is generally associated with an active transcrip-
tional state and has been shown to play an important role
in the control of alternative splicing [4,5].

*Correspondence: Conrad.Burden@anu.edu.au
1Mathematical Sciences Institute, Australian National University, Canberra ACT
2601, Australia
Full list of author information is available at the end of the article

The diverse and subtle effects of DNA methylation
enable a given genome to produce different phenotypic
outputs as part of a developmental program or in response
to environmental factors. This has fundamental implica-
tions at the organismal level, where DNA methylation
plays an important role in phenotypic plasticity [6]. This
is also important at the cellular level to create diverse cell
types, tissues and organs all based on the same genome.
DNA methylation patterns can thus change from one cell
type to another or within a cell under different conditions
[7].
The diversity of methylation patterns in a sample can be

studied with a single base pair resolution using the bisul-
phite sequencing technique [8]. When DNA is treated
with bisulphite, the unmethylated cytosines are converted
to uracils with a high (albeit not complete) efficiency,
whereas the methylated cytosines remain as cytosines.
A library is prepared from the bisulphite treated DNA
by fragmenting to lengths of approximately 200 bp and
PCR amplified. During this amplification process, uracils
are replicated as thymines (T). The DNA library is then
sequenced and the resulting reads are mapped to a ref-
erence. Within each read, CpG dinucleotides which have

© 2015 Lin et al.; licensee BioMed Central. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
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Background
Epigenetic regulations are involved in a broad range of
biological processes, including development, tissue home-
ostasis, learning and memory, as well as various diseases
such as obesity and cancer [1-3].
DNA methylation is one of the best studied epigenetic

molecular mechanisms. It consists of the addition of a
methyl group to the cytosine residues (C) of a DNA
molecule. In animals, DNA methylation usually takes
place in the CpG context: cytosines followed by a guanine
(G) residue.
DNA methylation modulates gene expression through

a variety of mechanisms. In vertebrates, methylation in
the promoter region usually has a repressive effect on
transcription initiation. By contrast, methylation of gene
bodies is generally associated with an active transcrip-
tional state and has been shown to play an important role
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The diverse and subtle effects of DNA methylation
enable a given genome to produce different phenotypic
outputs as part of a developmental program or in response
to environmental factors. This has fundamental implica-
tions at the organismal level, where DNA methylation
plays an important role in phenotypic plasticity [6]. This
is also important at the cellular level to create diverse cell
types, tissues and organs all based on the same genome.
DNA methylation patterns can thus change from one cell
type to another or within a cell under different conditions
[7].
The diversity of methylation patterns in a sample can be

studied with a single base pair resolution using the bisul-
phite sequencing technique [8]. When DNA is treated
with bisulphite, the unmethylated cytosines are converted
to uracils with a high (albeit not complete) efficiency,
whereas the methylated cytosines remain as cytosines.
A library is prepared from the bisulphite treated DNA
by fragmenting to lengths of approximately 200 bp and
PCR amplified. During this amplification process, uracils
are replicated as thymines (T). The DNA library is then
sequenced and the resulting reads are mapped to a ref-
erence. Within each read, CpG dinucleotides which have
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EGFR gene methylation is not 
involved in Royalactin controlled 
phenotypic polymorphism in 
honey bees
R. Kucharski, S. Foret & R. Maleszka

The 2011 highly publicised Nature paper by Kamakura on honeybee phenotypic dimorphism, (also 

using Drosophila as an experimental surrogate), claims that a single protein in royal jelly, Royalactin, 

essentially acts as a master “on-off” switch in development via the epidermal growth factor receptor 
(AmEGFR), to seal the fate of queen or worker. One mechanism proposed in that study as important 
for the action of Royalactin is differential amegfr methylation in alternate organismal outcomes. 

According to the author differential methylation of amegfr was experimentally confirmed and shown 
in a supportive figure. Here we have conducted an extensive analysis of the honeybee egfr locus 

and show that this gene is never methylated. We discuss several lines of evidence casting serious 
doubts on the amegfr methylation result in the 2011 paper and consider possible origins of the 
author’s statement. In a broader context, we discuss the implication of our findings for contrasting 
context-dependent regulation of EGFR in three insect species, Apis mellifera, D. melanogaster and 

the carpenter ant, Camponotus floridanus, and argue that more adequate methylation data scrutiny 
measures are needed to avoid unwarranted conclusions.

In the social honey bee Apis mellifera, two alternative female phenotypes, long-lived fertile queens and 
short-lived sterile workers are produced via differential feeding with a diet known as royal jelly (RJ)1–3. 
This complex, still poorly understood nutrition contains various ingredients4,5 including carbohydrates, 
vitamins, unusual lipids, antimicrobial agents, epigenomic modifiers such as histone deacetylases inhib-
itors (HDACs)6, as well as many other less characterised compounds4,5. The bulk of RJ is formed by 
several Major Royal Jelly Proteins (MRJPs) that appear to be unique to Hymenoptera2. MRJPs evolved 
from the insect Yellow protein family that has its origins in bacteria2,7. No relatives of MRJPs or Yellow 
proteins have been found in modern vertebrates, but a Yellow-like protein is encoded by the genome of 
a chordate Branchiostoma floridae (GenBank XP_002607604). The remarkable developmental potency of 
RJ has been attributed to a synergistic effect of many if not all of its components acting as activators of 
signalling pathways via threshold based changes in metabolic flux and epigenomic modifications8–11. This 
view has been somewhat obscured by the 2011 study claiming that one of the MRJPs, labelled Royalactin, 
is capable on its own to drive all the changes needed to make a queen bee12 effectively reducing the entire 
process of queen development to the vagaries of one protein. Furthermore, treating Drosophila with 
Royalactin appears to increase body size and ovary development in female flies with the Canton S genetic 
background12. In order to reconcile those findings with prior evidence implicating DNA methylation in 
queen development13,14, Kamakura conducted DNA methylation analysis in the genomic region encoding 
AmEGFR. In one of the Figures (S34)12 he shows that “the overall level of methylation of amegfr in larvae 
reared with RJ (5%), which develop into queens, was decreased as compared with that in larvae reared 
with 40-30d RJ (57%), which emerge as workers. Similar results were observed in queen larvae and 
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