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...ATCCTACGTTAGCTTAGCTGTCGTTAGGTGCTCGTA...	  

Cytosines	  in	  a	  genome,	  par#cularly	  those	  in	  the	  
combina#on	  CpG,	  can	  undergo	  an	  epigene#c	  
change	  called	  methyla(on	  
	  
	  
	  
	  
	  
	  
Methyla#on	  pa2erns	  
	  

•  can	  play	  a	  role	  in	  cell	  development	  
•  can	  play	  a	  role	  in	  determining	  phenotype	  
•  can	  be	  a	  response	  to	  environmental	  factors	  	  
•  can	  change	  from	  cell-‐type	  to	  cell-‐type	  in	  an	  organism	  

(methylated)	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  (not	  methylated)	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  (methylated)	  



A	  popula#on	  of	  cells	  of	  a	  given	  type	  in	  a	  given	  organism	  defines	  a	  
probability	  distribu#on	  over	  methyla#on	  pa2erns	  
	  
e.g.	  for	  3	  nearby	  CpG	  sites	  	  
	  

k 	  	  	  	  	  pa2ern*	  	  	  	  	  	  	  	  Prob(K = k) = θk   
	  

1 	   	  0	  0	  0 	   	   	   	  0.72	  
2 	   	  0	  0	  1 	   	   	   	  0.12	  
3 	   	  0	  1	  0 	   	   	   	  0.00	  
4 	   	  0	  1	  1 	   	   	   	  0.00	  
5 	   	  1	  0	  0 	   	   	   	  0.10	  
6 	   	  1	  0	  1 	   	   	   	  0.00	  
7 	   	  1	  1	  0 	   	   	   	  0.01	  
8 	   	  1	  1	  1 	   	   	   	  0.05	  
	  

	  *	  0	  =	  unmethyated 	  1	  =	  methylated	  
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Methyla#on	  pa2erns	  are	  measured	  directly	  in	  
the	  laboratory	  via	  

	  	  

Bisulphite	  Conversion	  
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m	  

Bisulphite	  Treatment	  

Pa2ern:	  	  	  	  	  	  	  	  	  	  	  0	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  1	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  0	  

sequence	  &	  map	  to	  
reference	  genome	  



Bisulphite	  Conversion	  

Sequencing	  

Mapping	  to	  reference	  

Workflow	   DNA	  Extrac#on	  

PCR	  Amplifica#on	  

Table	  of	  counts	  for	  each	  pa2ern	  



Bisulphite	  Conversion	  

Sequencing	  

Mapping	  to	  reference	  

Workflow	   DNA	  Extrac#on	  

Sequencing	  Errors	  

Incomplete	  Conversion	  

PCR	  Amplifica#on	  

Table	  of	  counts	  for	  each	  pa2ern	  



We	  have	  developed	  the	  R	  Bioconductor	  Package	  MPFE:	  
	  

– Methyla#on	  Pa2erns	  Frequency	  Es#ma#on	  
	  

–  Inputs	  (n cytosines)	  
•  A	  table	  of	  methyla#on	  pa2ern	  counts	  yk,	  where	  1 ≤ k ≤ 2n 
labels	  the	  2n	  different	  methyla#on	  pa2erns	  

•  The	  non-‐conversion	  rate	  ε	  	  
•  The	  sequencing	  error	  rate	  η,	  either	  global	  or	  site-‐dependent	  	  
	  

	  
	  	  



We	  have	  developed	  the	  R	  Bioconductor	  Package	  MPFE:	  
	  

– Methyla#on	  Pa2erns	  Frequency	  Es#ma#on	  
	  

–  Inputs	  (n cytosines)	  
•  A	  table	  of	  methyla#on	  pa2ern	  counts	  yk,	  where	  1 ≤ k ≤ 2n 
labels	  the	  2n	  different	  methyla#on	  pa2erns	  

•  The	  non-‐conversion	  rate	  ε	  	  
•  The	  sequencing	  error	  rate	  η,	  either	  global	  or	  site-‐dependent	  	  
	  

–  Outputs	  
•  A	  table	  of	  pa2erns	  and	  their	  es#mated	  frequencies	  θk	  	  	  
•  List	  of	  spurious	  pa2erns	  called	  
•  Plots	  comparing	  the	  observed	  and	  es#mated	  frequencies	  
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Synthe#c	  Data	  

n	  =	  6	  CpG	  sites	  
total	  number	  of	  reads	  =	  2000	  
non-‐conversion	  rate	  ε	  =	  0.008	  
sequencing	  error	  rate	  η	  =	  0.005	  
25	  pa2erns,	  9	  are	  called	  spurious	  	  



Biological	  Data	  	   	  (honeybee	  worker	  brains	  –	  gene	  GB17113)	  

n	  =	  14	  CpG	  sites	  
total	  number	  of	  reads	  =	  2347	  
non-‐conversion	  rate	  ε	  =	  0.01	  
sequencing	  error	  rate	  η	  =	  0.02	  
160	  pa2erns,	  47	  are	  called	  spurious	  	  
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Given:	  	  
•  n	  CpG	  sites,	  k = 1, 2, ..., 2n possible	  pa2erns	  
•  true	  distribu#on	  over	  pa2erns	  to	  be	  es#mated	  

•  non-‐conversion	  rate	  ε	  and	  read	  error	  rate	  η 

The	  probability	  of	  a	  true	  pa2ern	  k	  registering	  as	  pa2ern	  l	  	  
is	  	  
	  
	  
where	  the	  2n×2n	  	  matrix	  M	  is	  (afer	  a	  li2le	  bit	  of	  algebra)	  	  

	  

Pr(K = k) =θk

Pr(L = l K = k) =Mkl

M = E⊗ E⊗K⊗ E,         E =
1−ε −η + 2εη ε +η − 2εη

η 1−η

#

$
%
%

&

'
(
(

How	  does	  it	  work?	  

n #mes	  



Then	  the	  probability	  a	  read	  registers	  as	  pa2ern	  number	  l	  
is	  
	  
	  
	  
	  
	  
	  
The	  distribu#on	  of	  read	  counts	  Y1, Y2, ..., Y2^n for	  pa2erns	  
l = 1, ..., 2n out	  of	  a	  total	  of	  N	  reads	  is	  a	  mul#nomial	  
distribu#on:	  	  

Pr(L = l) = Pr(K = k)Pr(L = l K = k)
k=1

2n

∑ = θkMkl
k=1

2n

∑

Pr Y = y θ( ) = N!
y1!y2 !...y2n !

θkMkl
k=1

2n

∑
"

#
$$

%

&
''

l=1

2n

∏
yl



...	  which	  enables	  a	  maximum	  likelihood	  es#mate	  of	  the	  underlying	  
distribu#on	  θ	  from	  
	  
	  
	  
	  
subject	  to	  the	  important	  constraints	  
	  
	  
	  
	  
	  
•  Implemented	  in	  R	  using	  the	  func#on	  constrOp#m()	  
•  For	  realis#c	  data	  the	  es#mate	  of	  θk	  is	  generally	  on	  the	  boundary	  

of	  the	  constraint	  θk ≥ 0.	  I.e.	  	  there	  are	  many	  ‘observed’	  pa2erns	  
which	  turn	  out	  to	  be	  spurious.	  	  

L θ Y = y( ) = log Pr Y = y θ( )( )∝ yk
l=1

2n

∑ log θkMkl
k=1

2n

∑
#

$
%%

&

'
((

θk =1,      
k=1

2n

∑ θk ≥ 0.
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Synthe#c	  Data	  

n	  =	  6	  CpG	  sites	  
total	  number	  of	  reads	  =	  2000	  
non-‐conversion	  rate	  ε	  =	  0.008	  
sequencing	  error	  rate	  η	  =	  0.005	  
25	  pa2erns,	  9	  are	  called	  spurious	  	  
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Synthe#c	  Data	  

n	  =	  6	  CpG	  sites	  
total	  number	  of	  reads	  =	  2000	  
non-‐conversion	  rate	  ε	  =	  0.008	  
sequencing	  error	  rate	  η	  =	  0.005	  
25	  pa2erns,	  9	  are	  called	  spurious	  	  

Spurious	  pa2erns	  on	  
the	  boundary	  of	  the	  
constraint	  region.	  	  
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Estimation of the methylation pattern
distribution from deep sequencing data
Peijie Lin1, Sylvain Forêt2, Susan R Wilson1,3 and Conrad J Burden1*

Abstract
Background: Bisulphite sequencing enables the detection of cytosine methylation. The sequence of the
methylation states of cytosines on any given read forms a methylation pattern that carries substantially more
information than merely studying the average methylation level at individual positions. In order to understand better
the complexity of DNA methylation landscapes in biological samples, it is important to study the diversity of these
methylation patterns. However, the accurate quantification of methylation patterns is subject to sequencing errors
and spurious signals due to incomplete bisulphite conversion of cytosines.

Results: A statistical model is developed which accounts for the distribution of DNA methylation patterns at any
given locus. The model incorporates the effects of sequencing errors and spurious reads, and enables estimation of
the true underlying distribution of methylation patterns.

Conclusions: Calculation of the estimated distribution over methylation patterns is implemented in the R
Bioconductor package MPFE. Source code and documentation of the package are also available for download at
http://bioconductor.org/packages/3.0/bioc/html/MPFE.html.

Keywords: DNA methylation, Bisulfite sequencing, DNA methylation patterns, Epiallele

Background
Epigenetic regulations are involved in a broad range of
biological processes, including development, tissue home-
ostasis, learning and memory, as well as various diseases
such as obesity and cancer [1-3].
DNA methylation is one of the best studied epigenetic

molecular mechanisms. It consists of the addition of a
methyl group to the cytosine residues (C) of a DNA
molecule. In animals, DNA methylation usually takes
place in the CpG context: cytosines followed by a guanine
(G) residue.
DNA methylation modulates gene expression through

a variety of mechanisms. In vertebrates, methylation in
the promoter region usually has a repressive effect on
transcription initiation. By contrast, methylation of gene
bodies is generally associated with an active transcrip-
tional state and has been shown to play an important role
in the control of alternative splicing [4,5].

*Correspondence: Conrad.Burden@anu.edu.au
1Mathematical Sciences Institute, Australian National University, Canberra ACT
2601, Australia
Full list of author information is available at the end of the article

The diverse and subtle effects of DNA methylation
enable a given genome to produce different phenotypic
outputs as part of a developmental program or in response
to environmental factors. This has fundamental implica-
tions at the organismal level, where DNA methylation
plays an important role in phenotypic plasticity [6]. This
is also important at the cellular level to create diverse cell
types, tissues and organs all based on the same genome.
DNA methylation patterns can thus change from one cell
type to another or within a cell under different conditions
[7].
The diversity of methylation patterns in a sample can be

studied with a single base pair resolution using the bisul-
phite sequencing technique [8]. When DNA is treated
with bisulphite, the unmethylated cytosines are converted
to uracils with a high (albeit not complete) efficiency,
whereas the methylated cytosines remain as cytosines.
A library is prepared from the bisulphite treated DNA
by fragmenting to lengths of approximately 200 bp and
PCR amplified. During this amplification process, uracils
are replicated as thymines (T). The DNA library is then
sequenced and the resulting reads are mapped to a ref-
erence. Within each read, CpG dinucleotides which have

© 2015 Lin et al.; licensee BioMed Central. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
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EGFR gene methylation is not 
involved in Royalactin controlled 
phenotypic polymorphism in 
honey bees
R. Kucharski, S. Foret & R. Maleszka

The 2011 highly publicised Nature paper by Kamakura on honeybee phenotypic dimorphism, (also 

using Drosophila as an experimental surrogate), claims that a single protein in royal jelly, Royalactin, 

essentially acts as a master “on-off” switch in development via the epidermal growth factor receptor 
(AmEGFR), to seal the fate of queen or worker. One mechanism proposed in that study as important 
for the action of Royalactin is differential amegfr methylation in alternate organismal outcomes. 

According to the author differential methylation of amegfr was experimentally confirmed and shown 
in a supportive figure. Here we have conducted an extensive analysis of the honeybee egfr locus 

and show that this gene is never methylated. We discuss several lines of evidence casting serious 
doubts on the amegfr methylation result in the 2011 paper and consider possible origins of the 
author’s statement. In a broader context, we discuss the implication of our findings for contrasting 
context-dependent regulation of EGFR in three insect species, Apis mellifera, D. melanogaster and 

the carpenter ant, Camponotus floridanus, and argue that more adequate methylation data scrutiny 
measures are needed to avoid unwarranted conclusions.

In the social honey bee Apis mellifera, two alternative female phenotypes, long-lived fertile queens and 
short-lived sterile workers are produced via differential feeding with a diet known as royal jelly (RJ)1–3. 
This complex, still poorly understood nutrition contains various ingredients4,5 including carbohydrates, 
vitamins, unusual lipids, antimicrobial agents, epigenomic modifiers such as histone deacetylases inhib-
itors (HDACs)6, as well as many other less characterised compounds4,5. The bulk of RJ is formed by 
several Major Royal Jelly Proteins (MRJPs) that appear to be unique to Hymenoptera2. MRJPs evolved 
from the insect Yellow protein family that has its origins in bacteria2,7. No relatives of MRJPs or Yellow 
proteins have been found in modern vertebrates, but a Yellow-like protein is encoded by the genome of 
a chordate Branchiostoma floridae (GenBank XP_002607604). The remarkable developmental potency of 
RJ has been attributed to a synergistic effect of many if not all of its components acting as activators of 
signalling pathways via threshold based changes in metabolic flux and epigenomic modifications8–11. This 
view has been somewhat obscured by the 2011 study claiming that one of the MRJPs, labelled Royalactin, 
is capable on its own to drive all the changes needed to make a queen bee12 effectively reducing the entire 
process of queen development to the vagaries of one protein. Furthermore, treating Drosophila with 
Royalactin appears to increase body size and ovary development in female flies with the Canton S genetic 
background12. In order to reconcile those findings with prior evidence implicating DNA methylation in 
queen development13,14, Kamakura conducted DNA methylation analysis in the genomic region encoding 
AmEGFR. In one of the Figures (S34)12 he shows that “the overall level of methylation of amegfr in larvae 
reared with RJ (5%), which develop into queens, was decreased as compared with that in larvae reared 
with 40-30d RJ (57%), which emerge as workers. Similar results were observed in queen larvae and 
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