Integrative meta analyses to combine transcriptomics studies

Florian Rohart¹, A. Eslami², S. Bougeard³, C. Wells^{1,4}, K-A. Lê Cao⁵

¹ Australian Institute for Bioengineering and Nanotechnology (The University of Queensland), ²Canada, ³France, ⁴University of Glasgow, ⁵ The University of Queensland Diamantina Institute

(日) (同) (三) (三)

Motivation One example What's the problem? Literature check but...

Outline

1 Introduction

- Motivation
- One example
- What's the problem?
- Literature check
- but...

Common Approaches

- Meta analysis
- Integrative analysis

meta-splsda approach

Benchmarking

Conclusion

<ロ> <同> <同> < 回> < 回>

Introduction

Common Approaches meta-splsda approach Benchmarking Conclusion

Motivation

One example What's the proble Literature check but...

Outline

Introduction

Motivation

- One example
- What's the problem?
- Literature check
- but...

Common Approaches

- Meta analysis
- Integrative analysis

meta-splsda approach

Benchmarking

Conclusion

<ロ> <同> <同> < 回> < 回>

Motivation One example What's the problem? Literature check but...

Motivation

Heaps of publicly available data that have been under used; frequently used in only one publication with low sample size.

What can we do with a lot of data?

э

(日) (同) (三) (三)

Motivation One example What's the problem? Literature check but...

Motivation

Heaps of publicly available data that have been under used; frequently used in only one publication with low sample size.

What can we do with a lot of data?

Combine studies that focus on the same question, 2 ways:

(日) (同) (三) (三)

Motivation One example What's the problem? Literature check but...

Motivation

Heaps of publicly available data that have been under used; frequently used in only one publication with low sample size.

What can we do with a lot of data?

Combine studies that focus on the same question, 2 ways:

• meta-analysis: combines the results obtained on each single study.

In the context of Differentially Expressed Genes (DEG), a gene is differentially expressed if it is so in every single study => Venn Diagram

(日) (同) (三) (三)

Motivation One example What's the problem? Literature check but...

Motivation

Heaps of publicly available data that have been under used; frequently used in only one publication with low sample size.

What can we do with a lot of data?

Combine studies that focus on the same question, 2 ways:

• meta-analysis: combines the results obtained on each single study.

In the context of Differentially Expressed Genes (DEG), a gene is differentially expressed if it is so in every single study => Venn Diagram

• integrative-analysis: combines the studies to obtain new results.

DEG analysis on the concatenated data. Increased sample size, which should increase power

(日) (同) (三) (三)

Introduction

Common Approaches meta-splsda approach Benchmarking Conclusion Motivation One example What's the problem? Literature check but...

Outline

Introduction

Motivation

One example

- What's the problem?
- Literature check
- but...

Common Approaches

- Meta analysis
- Integrative analysis

meta-splsda approach

Benchmarking

Conclusion

<ロ> <同> <同> < 回> < 回>

Motivation One example What's the problem? Literature check but...

Heaps of data - example used throughout

- Fibroblasts (Fib): main connective tissue cells present in the body;
- human Embryonic Stem Cells (hESC): pluripotent cells and can become all cell types of the body;
- human induced Pluripotent Stem Cells (hiPSC): genetically reprogrammed to an hESC-like state by being forced to express genes and factors important for maintaining the defining properties of embryonic stem cells

Classification framework.

Fibroblasts sit away from hESCs/hiPSC; hESCs and hiPSCs share similarities.

イロト イポト イラト イラト

Motivation One example What's the problem? Literature check but...

Heaps of data - example used throughout

Training set

Experiment	platform	Fib	hESC	hiPSC
Bock et al., 2011	Affymetrix HT-HG-U133A	6	20	12
Briggs et al., 2013	Illumina HumanHT-12 V4	18	3	30
Chung et al., 2011	Affymetrix HuGene-1.0-ST V1	3	8	10
Ebert et al., 2009	Affymetrix HG-U133 Plus2	2	5	3
Guenther et al., 2010	Affymetrix HG-U133 Plus2	2	17	20
Maherali et al., 2008	Affymetrix HG-U133 Plus2	3	3	15
Marchetto et al., 2010	Affymetrix HuGene-1.0-ST V1	6	3	12
Takahashi et al., 2014	Agilent SurePrint G3 GE 8x60K	3	3	3
total	8 datasets / 5 platforms	43	62	105

Test set

Experiment	platform	Fib	hESC	hiPSC
Andrade et al., 2012	Affymetrix HuGene-1.0-ST V1	3	6	15
Hu et al., 2011	Affymetrix HG-U133 Plus2	1	5	12
Kim et al., 2009	Affymetrix HG-U133 Plus2	1	1	3
Loewer et al., 2010	Affymetrix HG-U133 Plus2	4	2	7
Si-Tayeb et al., 2010	Affymetrix HG-U133 Plus2	3	6	6
Vitale et al., 2012	Illumina HumanHT-12 V4	8	3	18
Yu et al., 2009	Affymetrix HG-U133 Plus2	2	10	16
total	7 datasets / 3 platforms	22	33	77

Raw data available at www.stemformatics.org. Classical pre-processing: background correction, log2 transform, mapping to Ensembl ID and YuGene normalisation (Lê Cao, Rohart et al. (2014)). Around 15,000 genes

イロン 不同 とくほう イヨン

Introduction

Common Approaches neta-splsda approach Benchmarking Conclusion Motivation One example What's the problem? Literature check but...

Outline

Introduction

- Motivation
- One example

• What's the problem?

- Literature check
- but...

Common Approaches

- Meta analysis
- Integrative analysis

meta-splsda approach

Benchmarking

Conclusion

<ロ> <同> <同> < 回> < 回>

Motivation One example What's the problem? Literature check but...

Unwanted variation/batch effect appears clearly on PCA

Image: Image:

3

Motivation One example What's the problem? Literature check but...

Unwanted variation/batch effect appears clearly on PCA

Figure: Between group variance is higher than within group variance. 3 cell types, 8 studies

< □ > < 同 >

Introduction

ommon Approaches eta-splsda approach Benchmarking Conclusion Motivation One example What's the problem? Literature check but...

Outline

Introduction

- Motivation
- One example
- What's the problem?

Literature check

• but...

Common Approaches

- Meta analysis
- Integrative analysis

meta-splsda approach

Benchmarking

5 Conclusion

<ロ> <同> <同> < 回> < 回>

Introduction Common Approaches meta-splsda approach Literature check

Deal with unwanted variation/batch effect

Methods to accommodate batch effects:

- Quantile normalisation (Bolstad et al., 2003),
- batch mean-centering (Sims et al., 2008; Luo et al., 2010),
- ComBat (Johnson, Li, and Rabinovic, 2007),
- YuGene (Lê Cao, Rohart et al., 2014),
- linear model (batch as fixed effect),
- LMM-EH-PS (Listgarten et al., 2010),
- RUV-2 (Gagnon-Bartsch and Speed, 2012),

• . . .

(日) (同) (三) (三)

Motivation One example What's the problem? Literature check put...

Outline

1 Introduction

- Motivation
- One example
- What's the problem?
- Literature check
- but...

Common Approaches

- Meta analysis
- Integrative analysis

meta-splsda approach

Benchmarking

5 Conclusion

<ロ> <同> <同> < 回> < 回>

Motivation One example What's the problem? Literature check **but**...

Testing prediction accuracy is problematic - overfitting/bias?

Usually

Motivation One example What's the problem? Literature check **but...**

Testing prediction accuracy is problematic - overfitting/bias?

But biased

イロン 不同 とくほう イヨン

 Introduction
 Motivation

 Common Approaches
 One example

 meta-splsda approaches
 One example

 Benchmarking
 Conclusion

 Conclusion
 Description

 Testing prediction accuracy is problematic - overfitting/bias?

What should be done

(日) (同) (三) (三)

Introduction Common Approaches meta-splsda approach

Testing prediction accuracy is problematic - overfitting/bias?

ComBat: state of the art, known to efficiently remove batch effect, but

- normalises all data together (CV are biased)
- sensitive to adding/removing samples/datasets
- limited ways to assess downstream efficiency on independent test samples/datasets: no prediction tools except normalising a dataset with the training (Hughey and Butte, 2015) (can be dodgy)

(日) (同) (三) (三)

Motivation One example What's the problem? Literature check **but**...

Testing prediction accuracy is problematic - overfitting/bias?

ComBat; state of the art, known to efficiently remove batch effect, but

- normalises all data together (CV are biased)
- sensitive to adding/removing samples/datasets
- limited ways to assess downstream efficiency on independent test samples/datasets: no prediction tools except normalising a dataset with the training (Hughey and Butte, 2015) (can be dodgy)

Linear (mixed) models

- mostly no way to assess downstream efficiency on independent test datasets
- no prediction tools for new dataset after normalising by linear (mixed) models

(日) (同) (三) (三)

Introduction

Because normalization should be done with downstream analysis in mind,

we propose a new method that simultaneously aims to

- Classify samples from several datasets
- Use only a small subset of variables
- Be applicable, available and useable

イロト イポト イヨト イヨト

Motivation One example What's the problem? Literature check **but**...

Design

X is used to explain Y

イロン イロン イヨン イヨン 三日

Vleta analysis ntegrative analysis

Outline

Introduction

- Motivation
- One example
- What's the problem?
- Literature check
- but...

2 Common Approaches

- Meta analysis
- Integrative analysis

meta-splsda approach

Benchmarking

Conclusion

<ロ> <同> <同> < 回> < 回>

Meta analysis Integrative analysis

Outline

Introduction

- Motivation
- One example
- What's the problem?
- Literature check
- but...

Common Approaches
 Meta analysis

- Integrative analysis
- meta-splsda approach

Benchmarking

5 Conclusion

<ロ> <同> <同> < 回> < 回>

Meta analysis Integrative analysis

It's complicated...

Figure: Venn Diagram of the genes declared as Differentially Expressed with a FDR< 10^{-5} . 5 Genes in common.

Meta analysis Integrative analysis

Outline

Introduction

- Motivation
- One example
- What's the problem?
- Literature check
- but...

2 Common Approaches

- Meta analysis
- Integrative analysis

meta-splsda approach

Benchmarking

5 Conclusion

<ロ> <同> <同> < 回> < 回>

Common Approaches meta-splsda approach

Integrative analysis

Partial Least Square (PLS-DA) on our datasets

< 17 >

Outline

Introduction

- Motivation
- One example
- What's the problem?
- Literature check
- but...

Common Approaches

- Meta analysis
- Integrative analysis

3 meta-splsda approach

Benchmarking

5 Conclusion

<ロ> <同> <同> < 回> < 回>

meta-splsda approach

Don't forget the group structure!

Fib	hESC	hiPSC
100	91.9	86.7

Table: Classification accuracy (%), based on $2{+}15$ genes

23/34

meta-splsda approach

Don't forget the group structure!

Fib	hESC	hiPSC
100	91.9	86.7

Table: Classification accuracy (%), based on 2+15 genes

- global loading vectors a, b; shared by all groups
- partial PLS-components X_{ma} , Y_{mb} ; group specific

э

-

< □ > < 同 >

	Study	BER	Fib	hESC	hiPSC
0	Bock	22.2	100	100	33.3
Δ	Briggs	0.00	100	100	100
+	Chung	15.0	100	75.0	80.0
×	Ebert	11.1	100	100	66.7
0	Guenther	2.0	100	94.1	100
∇	Maherali	11.1	100	66.7	100
×	Marchetto	0.00	100	100	100
*	Takahashi	44.4	100	66.6	0.00
	overall	7.1	100	91.9	86.7

BER= average of the proportion of wrong classification in each class

문 문 문

24/34

meta-splsda approach Conclusion

Summary, PLS-DA vs meta-splsda

A B > A B >

< ∃⇒

Outline

Introduction

- Motivation
- One example
- What's the problem?
- Literature check
- but...

Common Approaches

- Meta analysis
- Integrative analysis

meta-splsda approach

4 Benchmarking

Conclusion

<ロ> <同> <同> < 回> < 回>

Combination of methods

Normalization method:

- nothing
- ComBat
- Linear models (LM)
- Linear mixed models, study effect as random (LMM)

Classification/variable selection method:

- PLS-DA
- sPLS-DA
- RandomForest (RF)

(日) (同) (三) (三)

э.

Benchmarking Conclusion

Results - Balanced Error Rate (BER)

BER: average of the proportion of wrong classification in each class LM: linear models LMM: linear mixed models RF: randomForest

FYI Prediction with ComBat is done as in Hughey and Butte, 2015

meta-splsda

< A

э

Benchmarking Conclusion

Results - Per cell type

mgPLS PLS-DA sPLS-DA randomForest meta.spisda ComBat+PLS-DA Com Bat+sPLS-DA ComBat+RF LM+PLS-DA LM+sPLS-DA LMM+PLSD-DA

100

mgPLS PLS-DA sPLS-DA randomForest meta.splsda ComBat+PLS-DA Com Bat+sPLS-DA ComBat+RF AD-SJ9+MJ LM+sPLS-DA LMM+PLSD-DA LMM+sPLSD-DA

Benchmarking Conclusion

Results - Selected genes. 2 on Comp1, 15 on Comp2

< 17 ▶

Outline

Introduction

- Motivation
- One example
- What's the problem?
- Literature check
- but...

Common Approaches

- Meta analysis
- Integrative analysis

meta-splsda approach

Benchmarking

Conclusion

<ロ> <同> <同> < 回> < 回>

Conclusions

One single method to:

- accommodate batch effect
- classify samples
- identify biomarkers
- give study-specific graphical outputs

available soon in mixOmics R-package (http://mixOmics.org)

(日) (同) (三) (三)

Conclusion

Conclusions

Some remarks

- the studies must share the same characteristics as in a meta analysis: won't work if one level of Y is missing in one study
- better to use more than 3 samples per study
- no p-values
- better to pre-process all studies in a similar way to limit unwanted variation

(日) (同) (三) (三)

Conclusion

Thanks

Thanks everyone (Wells Lab-Stemformatics team, co-authors, and you)

・ロト ・回ト ・ヨト ・ヨト