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Motivation

Heaps of publicly available data that have been under used; frequently used in only
one publication with low sample size.

What can we do with a lot of data?

Combine studies that focus on the same question, 2 ways:

meta-analysis: combines the results obtained on each single study.

In the context of Differentially Expressed Genes (DEG), a gene is differentially expressed if it
is so in every single study => Venn Diagram

integrative-analysis: combines the studies to obtain new results.

DEG analysis on the concatenated data. Increased sample size, which should increase power
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Heaps of data - example used throughout

Fibroblasts (Fib): main connective tissue cells present in the body;

human Embryonic Stem Cells (hESC): pluripotent cells and can become all cell
types of the body;

human induced Pluripotent Stem Cells (hiPSC): genetically reprogrammed to
an hESC-like state by being forced to express genes and factors important for
maintaining the defining properties of embryonic stem cells

Classification framework.
Fibroblasts sit away from hESCs/hiPSC; hESCs and hiPSCs share similarities.
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Heaps of data - example used throughout

Training set

Experiment platform Fib hESC hiPSC

Bock et al., 2011 Affymetrix HT-HG-U133A 6 20 12
Briggs et al., 2013 Illumina HumanHT-12 V4 18 3 30
Chung et al., 2011 Affymetrix HuGene-1.0-ST V1 3 8 10
Ebert et al., 2009 Affymetrix HG-U133 Plus2 2 5 3
Guenther et al., 2010 Affymetrix HG-U133 Plus2 2 17 20
Maherali et al., 2008 Affymetrix HG-U133 Plus2 3 3 15
Marchetto et al., 2010 Affymetrix HuGene-1.0-ST V1 6 3 12
Takahashi et al., 2014 Agilent SurePrint G3 GE 8x60K 3 3 3

total 8 datasets / 5 platforms 43 62 105

Test set

Experiment platform Fib hESC hiPSC

Andrade et al., 2012 Affymetrix HuGene-1.0-ST V1 3 6 15
Hu et al., 2011 Affymetrix HG-U133 Plus2 1 5 12
Kim et al., 2009 Affymetrix HG-U133 Plus2 1 1 3
Loewer et al., 2010 Affymetrix HG-U133 Plus2 4 2 7
Si-Tayeb et al., 2010 Affymetrix HG-U133 Plus2 3 6 6
Vitale et al., 2012 Illumina HumanHT-12 V4 8 3 18
Yu et al., 2009 Affymetrix HG-U133 Plus2 2 10 16

total 7 datasets / 3 platforms 22 33 77

Raw data available at www.stemformatics.org. Classical pre-processing: background
correction, log2 transform, mapping to Ensembl ID and YuGene normalisation (Lê
Cao, Rohart et al. (2014)). Around 15,000 genes
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Unwanted variation/batch effect appears clearly on PCA
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Figure: Between group variance is higher than within group variance. 3 cell types, 8 studies
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Deal with unwanted variation/batch effect

Methods to accommodate batch effects:

Quantile normalisation (Bolstad et al., 2003),

batch mean-centering (Sims et al., 2008; Luo et al., 2010),

ComBat (Johnson, Li, and Rabinovic, 2007),

YuGene (Lê Cao, Rohart et al., 2014),

linear model (batch as fixed effect),

LMM-EH-PS (Listgarten et al., 2010),

RUV-2 (Gagnon-Bartsch and Speed, 2012),

. . .
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Testing prediction accuracy is problematic - overfitting/bias?

Usually

Learning set
Classification

Normalisation

Test set
Prediction
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Testing prediction accuracy is problematic - overfitting/bias?

But biased

Learning set
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Normalisation

Test set
Prediction
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Testing prediction accuracy is problematic - overfitting/bias?

What should be done

Learning set

Normalisation 
+ 

Classification

Test set

Normalisation 
+ 

Prediction

Independent
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Testing prediction accuracy is problematic - overfitting/bias?

ComBat; state of the art, known to efficiently remove batch effect, but

normalises all data together (CV are biased)

sensitive to adding/removing samples/datasets

limited ways to assess downstream efficiency on independent test
samples/datasets: no prediction tools except normalising a dataset with the
training (Hughey and Butte, 2015) (can be dodgy)

Linear (mixed) models

mostly no way to assess downstream efficiency on independent test datasets

no prediction tools for new dataset after normalising by linear (mixed) models

14/34 F.Rohart meta-splsda



Introduction
Common Approaches
meta-splsda approach

Benchmarking
Conclusion

Motivation
One example
What’s the problem?
Literature check
but...

Testing prediction accuracy is problematic - overfitting/bias?

ComBat; state of the art, known to efficiently remove batch effect, but

normalises all data together (CV are biased)

sensitive to adding/removing samples/datasets

limited ways to assess downstream efficiency on independent test
samples/datasets: no prediction tools except normalising a dataset with the
training (Hughey and Butte, 2015) (can be dodgy)

Linear (mixed) models

mostly no way to assess downstream efficiency on independent test datasets

no prediction tools for new dataset after normalising by linear (mixed) models

14/34 F.Rohart meta-splsda



Introduction
Common Approaches
meta-splsda approach

Benchmarking
Conclusion

Motivation
One example
What’s the problem?
Literature check
but...

Aims

Because normalization should be done with downstream analysis in mind,

we propose a new method that simultaneously aims to

Classify samples from several datasets

Use only a small subset of variables

Be applicable, available and useable

15/34 F.Rohart meta-splsda



Introduction
Common Approaches
meta-splsda approach

Benchmarking
Conclusion

Motivation
One example
What’s the problem?
Literature check
but...

Design

��

��

P1

��

��

Q1

n1

1

nM

1

nM

1

n1

1

 �
��
�
�

��
���

 �
��
�
�

��
���

P1 Q1

�	��
����������������

�

X is used to explain Y

16/34 F.Rohart meta-splsda



Introduction
Common Approaches
meta-splsda approach

Benchmarking
Conclusion

Meta analysis
Integrative analysis

Outline

1 Introduction
Motivation
One example
What’s the problem?
Literature check
but...

2 Common Approaches
Meta analysis
Integrative analysis

3 meta-splsda approach

4 Benchmarking

5 Conclusion

17/34 F.Rohart meta-splsda



Introduction
Common Approaches
meta-splsda approach

Benchmarking
Conclusion

Meta analysis
Integrative analysis

Outline

1 Introduction
Motivation
One example
What’s the problem?
Literature check
but...

2 Common Approaches
Meta analysis
Integrative analysis

3 meta-splsda approach

4 Benchmarking

5 Conclusion

18/34 F.Rohart meta-splsda



Introduction
Common Approaches
meta-splsda approach

Benchmarking
Conclusion

Meta analysis
Integrative analysis

It’s complicated...
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Partial Least Square (PLS-DA) on our datasets
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Partial Least Square (Wold, 1966):
maximise the covariance between
linear combinations of X and Y

maximise the covariance

max
||a||=||b||=1

cov(Xa,Yb)

a, b loading vectors

Xa,Yb PLS-components
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Don’t forget the group structure!
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Table: Classification accuracy (%),
based on 2+15 genes

meta-splsda

max
||a||2=||b||2=1

∑M
m=1 nmcov(Xma,Ymb)

+λ1||a||1 + λ2||b||1

global loading vectors a, b;
shared by all groups

partial PLS-components
Xma,Ymb; group specific
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Summary, PLS-DA vs meta-splsda
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Combination of methods

Normalization method:

nothing

ComBat

Linear models (LM)

Linear mixed models, study effect as random (LMM)

Classification/variable selection method:

PLS-DA

sPLS-DA

RandomForest (RF)
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Results - Balanced Error Rate (BER)
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BER: average of the proportion of wrong classification in each class
LM: linear models
LMM: linear mixed models
RF: randomForest

FYI Prediction with ComBat is done as in Hughey and Butte, 2015
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Results - Per cell type
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Results - Selected genes. 2 on Comp1, 15 on Comp2
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Figure: YuGene-normalized gene expression of OCT4 and the two genes selected on component 1
of meta-splsda, for the cell types of eight studies referenced in Table ??. P-value from a t-test of
Fibroblasts vs both hESC and hiPSC is provided.
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Outline

1 Introduction
Motivation
One example
What’s the problem?
Literature check
but...

2 Common Approaches
Meta analysis
Integrative analysis

3 meta-splsda approach

4 Benchmarking

5 Conclusion
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Conclusions

One single method to:

accommodate batch effect

classify samples

identify biomarkers

give study-specific graphical outputs

available soon in mixOmics R-package (http://mixOmics.org)
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Conclusions

Some remarks

the studies must share the same characteristics as in a meta analysis: won’t work
if one level of Y is missing in one study

better to use more than 3 samples per study

no p-values

better to pre-process all studies in a similar way to limit unwanted variation
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Thanks

Thanks everyone
(Wells Lab-Stemformatics team, co-authors, and you)

34/34 F.Rohart meta-splsda


	Introduction
	Common Approaches
	meta-splsda approach
	Benchmarking
	Conclusion

