Sparse Multiple Correspondence Analysis for selection of Single Nucleotide Polymorphisms

Anne BERNARD

QFAB Bioinformatics, University of Queensland, Brisbane December 2nd, 2015

Motivation

- Genomics becoming common place in many fields
- Require sophisticated multivariate techniques to analyse high dimentional data
- ⇒ Variable selection and dimensionality reduction necessary to obtain simpler structures and interpret results

High-dimensional data

Analysis of the data structure and observation of a possible natural separation between individuals depending on their human genetic heritage.

One data set $X(I \times J) \Rightarrow$ Unsupervised multivariate analysis

Continuous data: PCA Categorical data: MCA

In case of high dimensional data ($I \gg J$): results difficult to interpret.

Solution: Use/Develop appropriate statistical methods to **select relevant variables** and **facilitate interpretation** of the results.

Case study: Genes potentially involved in skin aging

To date, no Genome Wide Association Study (GWAS) has sought links with skin aging.

⇒ In 2010 establishment of a GWAS research project by the CE.R.I.E.S. (funded by Chanel) to identify genes potentially involved in facial skin aging

Case study: Genes potentially involved in skin aging

Aim

Study the impact of genetic on expression of skin aging

How

By finding potential links between

- Single Nucleotide Polymorphism (SNPs) and
- Severity of signs of skin aging, given the age of the individuals and any aggravating factors (smoking status, sun exposure...)

Material

- 502 caucasian women of the SU.VI.MAX cohort living in the Paris area (aged 44-70 years)
- Data as covariates: age, Body Mass Index, smoking habits, hormonal status, lifetime sun exposure
- Digital images of the face taken for each participants

 Blood sample taken for DNA extraction and genetic analysis with Illumina Omni1 chips (1 million of SNPs)

- Most common type of genetic variation
- Replacement of one nucleotide by another one
 - A, T, G, C

Chromosome from Mother

Chromosome from Mother

Chromosome from Father

ID	SNP.1	SNP.2
AK	GG	AA
JD	GT	CC
MR	GT	AC
GB	GG	CC
NH	П	AC
AL	GG	CC
DO	π	AC
JM	π	CC
ED	π	AC
СВ	п	CC
CF	GG	AC
OD	π	CC
DM	П	AC
NS	GG	CC
JR	GT	AA

Original Coding

ID	SNP.1	SNP.2	
AK	GG	AA	
JD	GT	CC	
MR	GT	AC	
GB	GG	CC	
NH	П	AC	
AL	GG	CC	
DO	П	AC	
JM	π	CC	
ED	П	AC	
СВ	П	cc	
CF	GG	AC	
OD	π	CC	
DM	П	AC	
NS	GG	CC	
JR	GT	AA	

Original Coding

GG	GT	П	СС	AC	AA	ID
1	0	0	0	0	1	AK
0	1	0	1	0	0	JD
0	1	0	0	1	0	MR
1	0	0	1	0	0	GB
0	0	1	0	1	0	NH
1	0	0	1	0	0	AL
0	0	1	0	1	0	DO
0	0	1	1	0	0	JM
0	0	1	0	1	0	ED
0	0	1	1	0	0	СВ
1	0	0	0	1	0	CF
0	0	1	1	0	0	OD
0	0	1	0	1	0	DM
1	0	0	1	0	0	NS
0	1	0	0	0	1	JR

ID	SNP.1	SNP.2
AK	GG	AA
JD	GT	CC
MR	GT	AC
GB	GG	CC
NH	П	AC
AL	GG	CC
DO	П	AC
JM	π	CC
ED	П	AC
СВ	П	cc
CF	GG	AC
OD	π	CC
DM	π	AC
NS	GG	CC
JR	GT	AA

Original Coding

Original Coding

GG	GT	π	СС	AC	AA	ID
1	0	0	0	0	1	AK
0	1	0	1	0	0	JD
0	1	0	0	1	0	MR
1	0	0	1	0	0	GB
0	0	1	0	1	0	NH
1	0	0	1	0	0	AL
0	0	1	0	1	0	DO
0	0	1	1	0	0	JM
0	0	1	0	1	0	ED
0	0	1	1	0	0	СВ
1	0	0	0	1	0	CF
0	0	1	1	0	0	OD
0	0	1	0	1	0	DM
1	0	0	1	0	0	NS
0	1	0	0	0	1	JR

Original Coding

Original Coding

Original Coding

Case study: Material

Variables to be explained

Phenotypes

Sagging score [0-10]
 and others (global photoageing, wrinkling score, lentigines score)

Explained variables

Genetic data

795 063 SNPs analysed

Targeted set of 537 SNPs

- "Candidate GWAS"
- 1611 disjunctive columns
- 537 blocks

Application on SNPs data: Exploratory analysis

Step 1 Visualization of links between SNPs and between samples using **Multiple Correspondence Analysis** (MCA)

Step 2 Selection of the most important SNPs for a component using the sparse extension of MCA to select variables: **Sparse MCA**

Multivariate Exploratory Methods

When X matrix of categorical variables

$$egin{aligned} \mathbf{r} &= \mathbf{F} \mathbf{1} \\ \mathbf{c} &= \mathbf{F}^T \mathbf{1} \\ \mathbf{p}_{[i]} &= \mathsf{Nb} \ \mathsf{of} \ \mathsf{modalities} \ \mathsf{of} \ \mathsf{variable} \ j \end{aligned}$$

Multiple Correspondence Analysis

MCA via Generalized SVD of F

$$\mathbf{F} = \mathbf{P} \mathbf{\Delta} \mathbf{Q}^T$$
 with $\mathbf{P}^T \mathbf{M} \mathbf{P} = \mathbf{Q}^T \mathbf{W} \mathbf{Q} = \mathbf{I}$

where
$$\textbf{F}=[\textbf{F}_{[1]}|\dots|\textbf{F}_{[\emph{j}]}|\dots|\textbf{F}_{[\emph{J}]}]$$
 and $\textbf{Q}=[\textbf{Q}_{[1]}|\dots|\textbf{Q}_{[\emph{j}]}|\dots|\textbf{Q}_{[\emph{J}]}]$

In the case of PCA: $\mathbf{M} = \mathbf{W} = \mathbf{I}$

In the case of MCA: $\mathbf{M} = \mathbf{D_r}^{-1}$ $\mathbf{W} = \mathbf{D_c}^{-1}$

GSVD as low rank approximation of matrices

MCA can be seen as the solution of

$$\min_{\tilde{\mathbf{p}},\tilde{\mathbf{q}}} \|\mathbf{F} - \tilde{\mathbf{p}}\tilde{\mathbf{q}}^T\|_{\mathbf{W}}^2 \qquad \tilde{\mathbf{p}}^T \mathbf{M}\tilde{\mathbf{p}} = \tilde{\mathbf{q}}^t \mathbf{W}\tilde{\mathbf{q}} = \mathbf{1}$$
 (1)

with $\mathbf{F}^{(1)} = \mathbf{\tilde{p}\tilde{q}}$ the best rank-one matrix approximation of \mathbf{F}

Application on SNPs data: MCA analysis

Visualization of links between SNPs

- The SNPs the most contributing to the first axis
- 2 SNPs are close if individuals have the same genetic
- Too many SNPs
 → we want to select the most relevant ones

Application on SNPs data: sparse MCA

Application on SNPs data

Step 1 Visualization of links between SNPs and between samples using **Multiple Correspondence Analysis** (MCA)

Step 2 Selection of the most important SNPs for a component using the sparse extension of MCA to select variables: **Sparse MCA**

Challenge

To facilitate interpretation of MCA results

⇒ Select the most contributing SNPs on each axis (easier visualisation of relationship between SNPs and phenotype)

How?

Constraints imposed in the MCA problem to set coefficients to zero

Selection of **1 column** in the original table (categorical variable **X**)

=

Selection of a block of indicator variables in the complete disjunctive table

Sparse MCA via GSVD

$$\min_{\tilde{\mathbf{p}},\tilde{\mathbf{q}}} \|\mathbf{F} - \tilde{\mathbf{p}}\tilde{\mathbf{q}}^T\|_{\mathbf{W}}^2$$

$$\tilde{\mathbf{p}}^T \mathbf{M} \tilde{\mathbf{p}} = \tilde{\mathbf{q}}^t \mathbf{W} \tilde{\mathbf{q}} = \mathbf{1}$$
 (2)

Sparse MCA via GSVD

+regularization penalty function applied on q

$$\min_{\tilde{\mathbf{p}},\tilde{\mathbf{q}}} \|\mathbf{F} - \tilde{\mathbf{p}}\tilde{\mathbf{q}}^T\|_{\mathbf{W}}^2 + P_{\lambda}(\tilde{\mathbf{q}}) \qquad \tilde{\mathbf{p}}^T \mathbf{M}\tilde{\mathbf{p}} = \tilde{\mathbf{q}}^t \mathbf{W}\tilde{\mathbf{q}} = 1 \qquad (2)$$

 P_λ is a penalty function with tuning regularization parameter λ

Sparse MCA via GSVD

+regularization penalty function applied on q

$$\min_{\tilde{\mathbf{p}},\tilde{\mathbf{q}}} \|\mathbf{F} - \tilde{\mathbf{p}}\tilde{\mathbf{q}}^T\|_{\mathbf{W}}^2 + P_{\lambda}(\tilde{\mathbf{q}}) \qquad \tilde{\mathbf{p}}^T \mathbf{M}\tilde{\mathbf{p}} = \tilde{\mathbf{q}}^t \mathbf{W}\tilde{\mathbf{q}} = \mathbf{1}$$
 (2)

 P_λ is a penalty function with tuning regularization parameter λ

⇒ Use the Group LASSO penalization

$$P_{\lambda}(\boldsymbol{\beta}) = \lambda \sum_{k=1}^{K} \sqrt{J_{[k]}} \|\boldsymbol{\beta}_{[k]}\|_{2}$$

 $J_{[k]}$: number of variables in block k

 λ : penalty parameter to determine (cross validation, ad hoc approach,...)

Sparse MCA via GSVD

+regularization penalty function applied on q

$$\min_{\tilde{\mathbf{p}},\tilde{\mathbf{q}}} \|\mathbf{F} - \tilde{\mathbf{p}}\tilde{\mathbf{q}}^T\|_{\mathbf{W}}^2 + P_{\lambda}(\tilde{\mathbf{q}}) \qquad \tilde{\mathbf{p}}^T \mathbf{M}\tilde{\mathbf{p}} = \tilde{\mathbf{q}}^t \mathbf{W}\tilde{\mathbf{q}} = \mathbf{1}$$
 (2)

 P_{λ} is a penalty function with tuning regularization parameter λ

⇒ Use the **Group LASSO penalization**

$$P_{\lambda}(\boldsymbol{\beta}) = \lambda \sum_{k=1}^{K} \sqrt{J_{[k]}} \|\boldsymbol{\beta}_{[k]}\|_{2}$$

 $J_{[k]}$: number of variables in block k

 λ : penalty parameter to determine (cross validation, ad hoc approach,...)

Result: Entire blocks of dummy variables are selected or removed

Conclusion

Penalty parameter influence

Tunning parameter $\lambda = 0 \Rightarrow$ sparse MCA=MCA

Bernard Anne

Penalty parameter influence

λ increasing \Rightarrow some loadings set to 0

Penalty parameter influence

 λ increasing again \Rightarrow more loadings set to 0

Case study: Genes potentially involved in skin aging

Application on SNPs data: sparse MCA

537 SNPs

142 SNPs

Application on SNPs data: sparse MCA

After selection

537 SNPs

142 SNPs

Application on SNPs data: sparse MCA Comparison of the loadings

SNPs	MCA		SMCA	
	Comp1	Comp2	Comp1	Comp2
SNP1.AA	-0.078	0.040	-0.092	0.102
SNP1.AG	-0.014	-0.027	-0.022	-0.053
SNP1.GG	0.150	-0.002	0.132	-0.003
SNP2.AA	-0.082	0.041	0.000	0.000
SNP2.AG	-0.021	-0.025	0.000	0.000
SNP2.GG	-0.081	0.040	0.000	0.000
SNP3.CC	-0.004	0.050	0.000	0.083
SNP3.CG	0.016	0.021	0.000	0.042
SNP3.GG	-0.037	-0.325	0.000	-0.432
SNP4.AA	0.149	-0.003	0.050	0.000
SNP4.AG	-0.016	-0.025	-0.002	0.000
SNP4.GG	-0.081	0.040	-0.100	0.000
•••				
Nb non-zero loadings	1554	1554	172	108
Variance (%)	1.14	0.63	0.32	0.16
Cumulative variance (%)	1.14	1.77	0.32	0.48

Application on SNPs data: sparse MCA

Conclusion of the case study

- Selection of relevant SNPs that explain the most important variability between indivuals
- Results generating new biological hypotheses to be further investigated
- Further analyses: detection of interactions, pathway analysis

 Selected SNPs implicated in biological pathways such as Map-Kinase (cell growth factor) linked with skin aging

General conclusions

- Unsupervised method to select categorical variables
- Produce sparse loading structures
 - \rightarrow easier interpretation of the results
- Powerful in a context of variable selection in high dimension issues
 - \rightarrow reduce noise as well as computation time
- Research in progress: Extension of Sparse MCA to select variables within a block
 - ightarrow sparsity at both group and individual feature levels

References

Bernard, A., Guinot, C. and Saporta, G. (2012), Sparse principal component analysis for multiblock data and its extension to sparse multiple correspondence analysis, Proceedings Compstat 2012, 99-106,

Jolliffe, I. T. et al. (2003), A modified principal component technique based on the LASSO, *Journal of Computational and Graphical Statistics*, 12, 531–547,

Lê Cao, K.-A., Gonzalez I. and Dejean S (2009). integrOmics: an R package to unravel relationships between two omics data sets, Bioinformatics 25(21):2855–2856,

Shen, H. and Huang, J. (2008), Sparse principal component analysis via regularized low rank matrix approximation, *Journal of Multivariate Analysis*, 99, 1015–1034,

Yuan, M. and Lin, Y. (2006), Model selection and estimation in regression with grouped variables, *Journal of the Royal Statistical Society: Series B*, 68, 49–67,

Zou, H., Hastie, T. and Tibshirani, R. (2006), Sparse Principal Component Analysis, *Journal of Computational and Graphical Statistics*, 15, 265–286.

Acknowledgements

Work in collaboration with:

Pr. Gilbert Saporta CNAM, laboratoire CEDRIC, Paris, France

Dr. Christiane Guinot *Université Francois Rabelais, département d'informatique, Tours, France*

Pr. Hervé Abdi Department of Brain and Behavioral Sciences, The University of Texas at Dallas, Richardson, TX, USA

Pr. Arthur Tenenhaus SUPELEC, Gif-sur-Yvette, France