[Introduction](#page-1-0) [Multivariate analysis for biological data](#page-5-0) [Results](#page-13-0) [Conclusions](#page-22-0)

A multivariate approach for multiple 'omics data integration and biomarker discovery

Amrit Singh¹ & Kim-Anh Lê Cao²

¹The University of British Columbia, Vancouver, Canada; ²The University of Queensland Diamantina Institute, Brisbane, Australia

4 ロ ト ィ (型 ト ィ ヨ)

nad

Kim-Anh Lê Cao

Systems biology is the study of complex interactions in biological systems

- Holistic approach instead of a reductionist approach
- **Multi-disciplinary field**
- Integration of heterogeneous data

 \rightarrow we need to develop new ways of thinking and of analysing biological data

Kim-Anh Lê Cao

[Biometrics by the Harbour 2015](#page-0-0)

How to make sense of biological 'big data'?

from PMID: 22548756

 2990

'What is the key information that can be extracted from heterogeneous data sets?'

Kim-Anh Lê Cao [Biometrics by the Harbour 2015](#page-0-0)

4 0 8 1

Linear multivariate approaches

Linear multivariate approaches use latent variables (e.g. variables that are not directly observed) to reduce the dimensionality of the data.

A large number of observable variables are aggregated in linear models to summarize the data.

- **Dimension reduction**
	- \rightarrow project the data in a smaller subspace
- Handle highly correlated, irrelevant, missing values
- Capture experimental and biological variation

Some projection-based multivariate methods for data dimension reduction

4 0 F

 Ω

DIAMANTINA INSTITUTE

PCA: Principal Component Analysis PLS: Projection on Latent Structures DA: Discriminant Analysis (G)CCA: (Generalised) Canonical Correlation Analysis MCA: Multiple Correspondence Analysis

Kim-Anh Lê Cao [Biometrics by the Harbour 2015](#page-0-0)

Principal Component Analysis (PCA)

Objective function for the first component:

 $max_{max} var(Xa)$ $||a||=1$

- **X** is a matrix $(n \times p)$,
- \blacksquare a is the loading vector,
- $t = Xa$ is the first principal component (linear combination of p variables)

principal component:

 Ω IANTINA

associated loading vectors

Other principal components follow with the condition that they are orthogonal to each other.

Kim-Anh Lê Cao

Projection on Latent Structures (PLS) Objective function for the first set of variates:

- $\arg \max_{||a||=1, ||b||=1} \text{cov}(X a, Y b),$
- **Matrices:** \boldsymbol{X} $(n \times p)$ and \boldsymbol{Y} $(n \times q)$
- **Loading vectors:** a, b
- **Latent components:** $t = Xa$ and $u = Yb$ (linear combination of each set of variables)

Other latent variables follow with the condition that they are orthogonal to each other. **All Britain Art**

Kim-Anh Lê Cao

 2990

Ε

INSTITUTE

Variable selection: example with sparse PCA

- sPCA is solved iteratively with NIPALS algorithm (Wold 1987) to fit into a least squares framework
- **Lasso penalisation removes irrelevant** variables when calculating principal components

associated sparse loading vectors

\rightarrow component-wise variable selection

\rightarrow Similar idea for sparse PLS

Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. JRSSB; Shen, H., Huang, J.Z. (2008). Sparse principal component analysis via regularized low rank matrix approximation, J. Multivariate Analysis.

Lê Cao K-A. et al. (2009) A Sparse PLS for Variable Selection when Integrating Omics data, Stat Appl Gen Mol Biol, 7(1). $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$ 后

Kim-Anh Lê Cao

[Biometrics by the Harbour 2015](#page-0-0)

Biomarker discovery when integrating multiple data sets

- Data sets measured on the same samples
- **Aim:** select relevant biological features that are correlated within and between heterogeneous data sets
- Extends integrative multivariate analysis for more than 2 data sets

Tenenhaus A, Lê Cao K-A. et al. (2014). Variable selection for generalized canonical correlation analysis. Biostatistics. Günther O., Lê Cao K-A. et al. (2014) Novel multivariate methods for integration of genomics and proteomics data: Applications in a kidney transplant rejection study, OMICS: A journal of integrative biology, 18(11), 682-95. イロト イ押 トイヨ トイヨ トーヨ

Kim-Anh Lê Cao

[Biometrics by the Harbour 2015](#page-0-0)

 QQ

Generalised Canonical Correlation Analysis

Maximizes the sum of covariances between latent components associated to 2 data sets.

For J blocks of variables $X_1(n \times p_1), \ldots, X_J(n \times p_J)$,

$$
\max_{\mathbf{a}^1,\ldots,\mathbf{a}^J} \sum_{j,k=1,j\neq k}^J c_{kj} \text{Cov}(\mathbf{X}_j \mathbf{a}^j, \mathbf{X}_k \mathbf{a}^k) \qquad j=1,\ldots,J
$$

s.t. $||\mathbf{a}^j||_2 = 1$ and $||\mathbf{a}^j||_1 \leq \lambda_j$,

with $\textbf{\emph{C}}=\{c_{kj}\}$ the design matrix, $\textbf{\emph{a}}^j$ the loading vectors associated to each block j , λ_j the lasso parameter for each data set \boldsymbol{X}_j .

 $\mathbf{C} = \mathbf{A} \oplus \mathbf{B} + \mathbf{A$

 Ω

Kim-Anh Lê Cao [Biometrics by the Harbour 2015](#page-0-0)

Parameters to choose in sGCCA

- \blacksquare The design matrix C (user input)
- 2 The number of components H (cross-validation)
- 3 The lasso parameters \sim number of variables to select on each component of each data set (cross-validation)

The design matrix C determines which pairwise covariance matrix to maximize:

Kim-Anh Lê Cao [Biometrics by the Harbour 2015](#page-0-0)

Prediction in supervised sGCC-Discriminant Analysis

The outcome to predict is the dummy matrix Y .

GCC-DA models each data set X_i as:

 $Y_1 = X_1 \beta_1 + E_1$, $Y_2 = X_2 \beta_2 + E_2$, ... $Y_1 = X_1 \beta_1 + E_1$

 β_i is the matrix of the regression coefficients for each data set X_i and defined w.r.t GCCA constraints, E_i is the residual matrix.

The prediction of a new sample X_j^{new} is:

$$
\hat{Y}_1 = X_1^{\text{new}} \hat{\beta}_1, \quad \hat{Y}_2 = X_2^{\text{new}} \hat{\beta}_2, \quad \dots \quad \hat{Y}_J = X_J^{\text{new}} \hat{\beta}_J
$$

 $\hat{\beta}_j$ obtained from the loading vectors $(\bm{a}_j^1, \bm{a}_j^2, \dots, \bm{a}_j^H)$, with H the components.

 \rightarrow Prediction based on majority vote or average

Kim-Anh Lê Cao [Biometrics by the Harbour 2015](#page-0-0)

 OQ

 $\mathbf{1} \oplus \mathbf{1} \oplus \mathbf{$

Data visualisation

Visualisation to make sense of those large data sets by projection onto the subspace spanned by the latent components

◆ ロ ▶ → イ 冊

IVERSITY

 QQ

IANTINA

Kim-Anh Lê Cao

Breast cancer study (The Cancer Genome Atlas)

Breast cancer is a heterogeneous disease with respect to molecular alterations, cellular composition, and clinical outcome.

- **Develop tumor classifications clinically useful for prognosis or** prediction
- Intrinsic classifier based on a signature of 50 genes (PAM50 $\mathsf{classify}(\mathsf{er}^1)$

Can we expand the gene signature to other 'omics data types, increase prediction accuracy, and understand breast cancer at a systems biology level?

¹Tibshirani R, et al. (2002) Diagnosis of multiple cancer types by shrunken centroids of gene expression. PNAS 99

Amrit Singh, University [of B](#page-12-0)[rit](#page-14-0)[is](#page-12-0)[h C](#page-13-0)[o](#page-14-0)[lu](#page-12-0)[m](#page-14-0)[bi](#page-15-0)[a](#page-22-0)[,](#page-13-0) [C](#page-21-0)a[na](#page-0-0)[da](#page-23-0) \Box

Kim-Anh Lê Cao

The multi 'omics data

- Four intrinsic subtypes of breast cancer luminal A, luminal B, HER2-enriched, basal-like
- **Training set** $n = 377$ **, test set** $n = 573$
- mRNA, miRNA, proteomics and methylation data (up to 2,000 features each)

 Ω

Kim-Anh Lê Cao

Comparisons with other methods

¹Lê Cao, K.-A. et al (2011). Sparse PLS Discriminant Analysis: biologically relevant feature selection and graphical displays for multiclass problems. BMC bioinfo, 12(1).

²Zou, Hastie (2005). Regularization and Variable Selection via the [Elas](#page-14-0)ti[c N](#page-16-0)[e](#page-14-0)[t.](#page-15-0) [J](#page-15-0)[R](#page-16-0)[SS](#page-14-0)[B](#page-15-0)

Kim-Anh Lê Cao

[Biometrics by the Harbour 2015](#page-0-0)

 2990

DIAMANTINA

TUTE ISTI

Unsupervised clustering to understanding the data types Dunn Index: evaluate clustering based on the known tumour subtypes

- mRNA data set clusters tumour subtypes well
- sGCCA null-design clusters as well as mRNA while integrating all 4 data sets

Kevin Chang, [Un](#page-15-0)i[ve](#page-17-0)[rs](#page-15-0)[ity](#page-16-0) [o](#page-17-0)[f](#page-14-0)[A](#page-21-0)[uc](#page-22-0)[k](#page-12-0)[la](#page-13-0)[n](#page-21-0)[d](#page-22-0)[, N](#page-0-0)[Z](#page-23-0) 000

Kim-Anh Lê Cao [Biometrics by the Harbour 2015](#page-0-0)

Classification error rates on training set $(50 \times 5\text{-}fold CV)$

Single 'omics:

- \blacksquare eNet $>>$ sPLS-DA
- variable selection overlap ~ 10 -30%

Multi 'omics:

- **Ensemble > sGCC-DA**
- **sGCC-DA** design matters for performance
- variable selec[tio](#page-16-0)n [o](#page-18-0)[v](#page-16-0)[erl](#page-17-0)[ap](#page-18-0) \sim [2](#page-22-0)[0](#page-21-0)[-5](#page-13-0)0[%](#page-0-0)

ENSLAND

 2990

Kim-Anh Lê Cao

Performance of sGCC-DA with variable selection

Table : Mean classification error rate based on sGCCA full design with 3 components and a selection of 20 variables per component

- Similar error rates between training and test set.
- \blacksquare LumB subtype difficult to classify.

Samples projected in each 'omic subspace: integration is not an easy task!

Comp 1 vs. 2 Comp 1 vs 3

Kim-Anh Lê Cao

[Biometrics by the Harbour 2015](#page-0-0)

 \leftarrow \Box

 QQ

Integrative methods are better at unravelling associations between variables of different types

Concatenation **Ensemble** SGCC-DA full design

Dr Michael Vacher, The University of Western Australia

Kim-Anh Lê Cao

[Biometrics by the Harbour 2015](#page-0-0)

 $\mathbf{A} = \mathbf{A}$. The \mathbf{A}

◆ ロ ▶ → イ 冊

 2990

A highly connected biomarker signature

Gene Ontology analysis: selection of 60 genes and 60 proteins highlight estrogen response pathway.

Known: Estrogen receptor can cause changes in the expression of specific genes, which can lead to the stimulation of cell growth, particularly in luminal breast cancers.

In addition,

- **n** many oncogenic genes identified in our signatures
- **n** mRNAs and proteins part of the estrogen response pathway are distinct

 \rightarrow investigate whether those come intra and extra cellular components across data types

Dr Casey Shannon, PROOF Cent[re](#page-20-0) [of](#page-22-0) [Ex](#page-20-0)[ce](#page-21-0)[ll](#page-22-0)[en](#page-14-0)[c](#page-15-0)[e](#page-21-0)[,](#page-22-0) [V](#page-12-0)[a](#page-13-0)[n](#page-21-0)[co](#page-22-0)[uv](#page-0-0)[er](#page-23-0)

Kim-Anh Lê Cao

[Biometrics by the Harbour 2015](#page-0-0)

 2990 AMANTINA

Conclusions

Multivariate linear methods enables to answer a wide range of biological questions via

- Data exploration
- **Classification**
- \blacksquare Integration of multiple data sets
- **Nariable selection**

Multivariate methods presented here are part of the O_{mics} package dedicated to the exploration and integration of (large) biological data sets.

Integration of heterogeneous data set is a difficult challenge: this is only the beginning! (see next talks)

<http://www.mixOmics.org>

 2990

 $\mathbf{A} = \mathbf{A} \oplus \mathbf{A} \oplus \mathbf{A} \oplus \mathbf{A} \oplus \mathbf{A} \oplus \mathbf{A}$

[Biometrics by the Harbour 2015](#page-0-0)

Kim-Anh Lê Cao

mixOmics development

Methods development

Australian Government National Health and **Medical Research Council**

Kim-Anh Lê Cao [Biometrics by the Harbour 2015](#page-0-0)

E

 299

メロト メタト メミト メミト