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Australian wheat belt characteristics
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Weather variables
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Soil variables
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lots of variability
nutrient poor
toxin rich

hard to measure



Yield (g.m )

Genotype by Environment Interaction

South East

South

Fegion

Morth

West

National Variety Trials
933 trials

187 locations; 24 regions
162 varieties

Q years — 2005-13

Region by variety mean
yields showing GxE typical
of the Australian wheat
belt.



Trial variance-covariance heterogeneity
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Clustered phenotypic correlation
matrix of the South East dataset

180 trials, 71 varieties
We cannot ignore either the

variance or the covariance
heterogeneity.



Mixed model framework

y=Xt+Zu+n
Factor analytic

u=(AQ®L,)f + & and

var(u) = (AN +9¢) & Iy
Smith et al (2001) ANZJS & Biometrics
Smith et al (2015) TAG

ASREML-R v 3.0-1 asreml object 4.0jy on the R platform

Starting line: FA of order k = 1. Usually the larger k the more
variance-covariance is explained. However, here we stop at k = 1
so that we have some variability to use the environmental covariates
with.

Goalpost: FA1 + V:TMY as an indicator of how much can be

explained by environmental covariates — modern day Finlay-
Wilkinson model?



Environmental Covariates

Weather:

Rainfall
Temperature — min/max/mean
Radiation
Soil
Physical — Texture, plant available water capacity
Chemical - N, P, K, S, Zn, pH, Total Exchangeable Cations
Biological
Primary and secondary sets of covariates - PCA
Gene based phenology model to provide us with growth
stages, e.g. pre-sowing, vegetative, flowering, grainfilling

Indices — the sky is the limit!



Cyclic forward regression

y=Xt+Zu+Z'u + g

where U”is the tmC X 1 vector of random variety effects for each environment
and each covariate with associated design matrix Z™.

There are 4 steps in each cycle:
Note the REML Loglikelihood for the current (base) model

Obtain the REML Loglikelihood for each candidate covariate (Z7) by
adding the random term Z* X Variety to the current base model

|dentify several candidate covariates which make a large (and
significant) increase in the Loglikelihood but which are not variants of

each other

Add this set of candidates and then drop any that do not contribute
significantly to the enlarged model

STOP when the REML Loglikelihood is not significant.
Output Variety by covariate BLUPS for interpretation.



Cyclic forward regression properties

Heuristic
Statistician labour intensive
West: n_ = 50, n, = 50 with 15 covariates took 2 days

SouthEast: n, = 141, n, = 71 with 12 covariates took 5
days

Forward regression in that mostly terms are not
dropped from the model but this is not hard and fast.

Nested models



Subset regression

Fits every possible combination of the C environmental
covariates, i.e. ).7_; °C;

for 12 covariates = 4095 models!

For 15 covariates = 32, 767 modelsl!!!

The FAT1 + covariate model is fitted for each covariate
individually. The resulting gammas from these models are
used as initial starting values for the C > 1 models.

Each model is then fitted simultaneously across a computer
cluster, the results returned and collated together into one
file.

Models with a covariate term that hits the boundary are
removed

The remaining models are inspected for the lowest AIC/BIC



Subset regression selection

Distribution models into high performance cluster

Condor for computing non-intensive models (WA)
<10 min for 32767 models with 8000+ cores

HPC for computing intensive models (NSW & VIC)

1 hour for the n, = 141, n, =71 4095 models with 200
cores

Outputs: 1 .csv file 7MB




Cyclic Regression Example - West

n, = 50, n, = 50, 45% balance, 47% of the GxE expl. by FAT

e

o0 Cycle 1 Cycle 2 Cycle 3

1106 , | FA1 + V- TMY
1097 o | _u L
108 J
- 104
fal(Trial):Variety +
1040- !-H- fal(Trial):Variety + V:pH + V:N +
==t fal(Trial):Variety V:pH + V:N V:S2_sum.rain
FA1




Subset Regression Example - West

15 covariates == 32, 767 different models

Discard any models with boundary terms (1563 models
to inspect)

Four models with the same minimum AIC

Model Logl AIC BIC

$2_sum.rain + N + pH 1097 -1985 -1468
S2_sum.rain + S2_frost.sum + N + pH 1097 -1985 -1462
SO_sum.rain + S2_sum.rain + N + pH 1097 -1985 -1462
SO_sum.rain + S2_sum.rain + S1_avgt + N 1097 -1985 -1462

Check correlations between environmental covariates



Cyclic Regression Example — South East

n,=141,n, =71, 49% balance; FAT explains 33%

Cycle 1 Cycle 2 Cycle 3 Cycle 4
4500 -
4460 e I e
11|
4400 -
FA1 + V. TMY FAT + V.TMY,
%)
S
4300 -
- fal(Trial):Variety +
fal(Trial):Variety + V:S03_sum.rain +
fal(Trial):Variety + V:S03_sum.rain + V:S2_avgt + V:OC +
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Subset Regression Example — South East

12 covariates |:> 4095 models

Discard any models with boundary ..""h.,_

terms (1443 models to inspect) .\
Best model using AIC is: (LOGL = 4468)

FA1 + V:S03_sum.rain + V:S2_avgt !
+ V:OC + V:pH + +

V:S1_sum.rain N \
Best model using BIC is (LOGL = 4466) =~ I

FA1 + V:S03_sum.rain + V:S2_avgt II"'.
+ V:OC + V:pH + V:S1_sum.rain

Plot is 170 models with AIC < cyclic ‘."n

AlC

Still decisions that need to be made ',
with brains!

Madel



Summary of methods
N

Cyclic Regression Subset Regression

o slower but perhaps a better 0 faster
understanding of the dataset? 1 tendency to select models with
. fewer terms which may or may
1 more dependent on the choices not be helpful

made by the statistician/scientist " can always re-run terms in the

1 no. covariates not limited model
11 can use the cyclic regression
mindset to make selections

71 run lots of models you don’t need
— but does it matter2e?

1 no. covariates limited by the
system




Yield(g.m ijcmrariate unit

Model Outputs (West Results)

52 sum.rain (per 100m)

Variety by covariate predictions

|dentify varieties that are
sensitive to a particular
covariate.

E.g. for every 100mm increase in
flowering rain Scout yields
31g.m™? more than the average;

for every increase in pH unit it

S R R A R R S TR decreases by 0.9g.m2 and
I for every 50kg/ha increase in
ety oo vitela ) . avail. N it increases by 4.7g.m™.

200 200 400 500



Future work (i.e. questions to answer)

What'’s the best model?
Model selection criterion — AIC/BIC/other?
Percentage variance explained

Model relationship between environmental covariates to
accommodate the between covariate correlations

Model traits such as rainfall better, p-splines?

Predictive power still an issue, e.g. we want to predict how
varieties respond if there is a dry mid-season.

Incorporate flowering information as this is a key driver and
used by breeders/growers to manage environmental risk

Important to work with both physiologists and breeders to
make sure it’s not purely data driven
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Biplots from PCA of env covariates
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