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Introduction to VGLMs and VGAMs (1)

VGLMs and VGAMs are the extension of class of GLMs and
GAMs to include a class of multivariate regression models [Yee and
Wild, 1996].

VGLMs model each parameter as a linear combination of the
covariates,

ηj (x) = βT
j x =

p∑
k=1

β(j)k xk , j = 1, . . . ,M,

VGAMs extend VGLMs to

ηj (x) =

p∑
k=1

f(j)k (xk) , j = 1, . . . ,M.
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Introduction to VGLMs and VGAMs (2)

The current class of VGLMs/VGAMs is very large and
includes many statistical distributions and models:

univariate and multivariate distributions,
categorical data analysis,
quantile and expectile regression,
time series, survival analysis,
extreme value analysis, nonlinear regression,
reduced-rank regression, ordination, etc.

The underlying algorithm of VGAMs is
Modified vector backfitting using vector splines.
But...it is not easy to integrate the automatic numerical
procedure used to determine the shape of non-linear terms
from the data.
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P-spline VGAMs (1)

We aim to...
integrate an automatic procedure for estimating the
smoothing parameters to the VGAM framework.

To achieve this......
the ideas of GAMs based on penalized regression splines
proposed by Marx and Eilers [1998] and Wood [2006] are
generalized to the VGAM class.
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P-spline VGAMs (2)

Therefore, . . .
we develop VGAMs based on penalized regression splines
with P-spline smoothers, which we call ‘P-spline VGAMs’.

As a result, . . .
P-spline VGAMs can be transformed into the VGLM
framework,
and maximized by penalized iteratively re-weighted least
squares (P-IRLS).
The computational procedure for the automatic and stable
multiple smoothing parameter selection can be implemented.
The issue of determining the shape of the smooth terms can
be resolved.
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P-spline VGAMs (3)

The underlying ideas of P-splines are
to use B-splines as basis functions, and a large number of
equally-spaced knots are used,
but to prevent the problem of overfitting, a
discrete approximate wiggliness penalty is applied to the
model fitting objective,

S∑
s=1

(
∆[d ] as

)2
= aT P[d ] a, (1)

where P[d ] = DT
[d ] D[d ], D[d ] is the matrix consisting of d th

order difference of the coefficients, and a is a parameter
vector.

Here is a linear combination of B-spline basis functions:

f (xi ) =
S∑

s=1

as Bs(xi ). (2)
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P-spline VGAMs (4)

The basic structure of P-spline VGAMs is

gj (θj) = ηj (x) = f(j)1 (x1) + · · ·+ f(j)p (xp) , j = 1, . . . ,M,
(3)

where f(j)k are represented using B-splines, and are centered
for identifiability.
If there is an intercept, x1 = 1,
All P-spline VGAM smooth components are estimated
simultaneously.

Allow the P-spline VGAM approach to be more general for
use in many more situations
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P-spline VGAMs and constraint matrices (1)

In practice, we may wish to constrain the effects of a single
covariate

to be the same for different ηj , or
to have no effect for others.
For example

η1 = β(1)1 + f(1)2 (x2) + f(1)3 (x3)

η2 = β(2)1 + f(1)2 (x2). (4)
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P-spline VGAMs and constraint matrices (2)

Yee and Wild [1996] introduced ‘constraint matrices’
applied directly to the linear/additive predictors to control how
the covariates act – “constraints on the functions” .

These constraints
are very useful for categorical models, such as, a bivariate
odds-ratio model, and the proportional odds model,
lead the VGLM/VGAM approach to be more general for use in
most situations.

We will generalize these ideas to the P-spline VGAM framework.
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Setting up P-spline VGAMs as penalized VGLMs (1)

In general for P-spline VGAMs, we represent the models as

η = f 1(x1) + · · ·+ f p(xp)

= H1 f ∗
1(x1) + · · ·+ Hp f ∗

p(xp), (5)

where
H1, . . . ,Hp are known full column-rank ‘constraint matrices’,

f ∗
k =

(
f(1)k(xk), . . . , f(Rk )k(xk)

)T is a vector consisting of a
possibly reduced set of smooth functions.
Each smooth term is centered for identifiability.
No constraints at all, Hk = IM .

Chanatda Somchit (UoA) P-Spline VGAMs 1 December 2015 11 / 32



Setting up P-spline VGAMs as penalized VGLMs (2)

The smooth predictor vector η can be now written as

η(x i ) =

p∑
k=1

Hk X∗
ik β

∗
k , (6)

where
X∗

ik = x∗T
ik ⊗ IRk , x∗

ik = (Bk:1(xik), . . . ,Bk:Sk (xik))
T is a vector of

B-splines generated at the values of xk and ith observation,

β∗
k = vec


β∗T
(1)k
...

β∗T
(Rk )k

 , where β∗
(rk )k

=
(
a(rk )k:1, . . . , a(rk )k:Sk

)T
, for

rk = 1, . . . ,Rk .

Chanatda Somchit (UoA) P-Spline VGAMs 1 December 2015 12 / 32



Setting up P-spline VGAMs as penalized VGLMs (3)

Let β∗ =
(
β∗T
1 , . . . ,β∗T

p

)T
be a vector containing all of the

possibly reduced sets of B-spline coefficients in the models,

Xvam =

(
(Xam ẽ1)⊗H1

∣∣∣∣ (Xam ẽ2)⊗H2

∣∣∣∣ · · · ∣∣∣∣ (Xam ẽp)⊗Hp

)
,

where
Xvam is the model matrix for P-spline VGAMs,
Xam is the ‘additive model’ model matrix for one ηj , and

ẽk =

 0
I(Sk×Sk )

0

 .

Then,
η = Xvam β

∗. (7)

Equation (7) is just the form of VGLMs, therefore

`(β∗) =
n∑

i=1

wi `{η1(x i ), . . . , ηM(x i )}. (8)
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Setting up P-spline VGAMs as penalized VGLMs (4)

Now, it is a good chance to control the model’s smoothness by
adding a wiggliness penalty to the log-likelihood objective of
` (β∗) .

The penalty term for P-spline VGAMs is given by

J(λ) =

p∑
k=1

Rk∑
j=1

λ(j)k β
T
(j)k DT

[d ]k D[d ]k β(j)k

=

p∑
k=1

β∗T
k

{(
DT

[d ]k D[d ]k

)
⊗ diag

(
λ(1)k , . . . , λ(Rk )k

)}
β∗
k

=

p∑
k=1

β∗T
k P∗

λk β
∗
k ,

where P∗
λk =

(
DT

[d ]k D[d ]k

)
⊗ diag

(
λ(1)k , . . . , λ(Rk )k

)
.
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Setting up P-spline VGAMs as penalized VGLMs (5)

Then, the quadratic penalty on the parameter vector β∗ for
P-spline VGAMs is given by

J(λ) = β∗T P∗
λ β

∗,

where P∗
λ = blockdiag

(
P∗
λ1, . . . ,P

∗
λp

)
.

The penalized log-likelihood for P-spline VGAMs is then

`∗(β∗) = `(β∗)− 1
2
β∗T P∗

λ β
∗. (9)
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P-IRLS formulation (1)

Newton-Raphson algorithm is applied for maximizing the
log-likelihood (9),

β∗(t+1) = β∗(t) + I
(
β∗(t)

)−1
U
(
β∗(t)

)
. (10)

Maximizing `∗ (β∗) using (10) leads to an iterative solution
for penalized iteratively reweighted least squares (P-IRLS) of

β∗(t+1) =
(
XT

vam W(t)Xvam + P∗
λ

)−1 (
XT

vam W(t) z (t)
)
.

(11)
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P-IRLS formulation (2)

Given values for λ, β̂∗(t+1) is the solution to

min
β∗

(
z−Xvam β

∗
)T

W
(
z−Xvam β

∗
)

+β∗T P∗
λ β

∗, (12)

where
W = blockdiag (W1, . . . ,Wn) ,

- Fisher scoring: (Wi )jk = −wi E

(
∂2`i

∂ηj ∂ηk

)
,

z =
(
zT

1 , . . . , z
T
n

)T
and u =

(
uT

1 , . . . ,u
T
n

)T
, where

(u i )j = wi
∂`i
∂ηj

, and z i = ηi + (Wi )
−1 u i .

Chanatda Somchit (UoA) P-Spline VGAMs 1 December 2015 17 / 32



P-IRLS formulation (3)

Data augmentation is applied to the adjusted dependent
vector, regressors, and weights:

z
′

=

(
z
ϑ

)
, X

′

vam =

(
Xvam

P̃
∗
λ

)
, W

′
= blockdiag (W, Iϑ) ,

where P∗
λ = P̃

T∗
λ P̃

∗
λ, ϑ =

p∑
k=1

(Sk − d) ·M.

Therefore, (12) can be replaced by the equivalent:

min
β∗

(
z
′
− X

′

vam β
∗
)T

W
′
(
z
′
− X

′

vam β
∗
)
. (13)

We convert the GLS system of equations to OLS:

z
′′(t) = X

′′(t)
vam β

∗ + ε
′′(t). (14)

In P-IRLS, we fit OLS model above using the data
augmentation of z , W, and Xvam until the convergence is
achieved.
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Estimating smoothing parameters (1)

Given an estimate for β∗, the multiple smoothing parameter
selection for penalized least squares above can be solved by
the minimization of the GCV or the ‘unbiased risk estimator’
(UBRE) w.r.t. the multiple smoothing parameters.

The UBRE score for the P-spline VGAM approach:

νu (λ) =
1
nM

∥∥∥√W (z − XVAM β
∗)
∥∥∥2
− 1 +

2
nM

tr(Aλ).

Aλ = XT
vam WXvam

(
XT

vam WXvam + Pλ
)−1

is the hat
matrix.
λ enters the UBRE score through Aλ.
tr (Aλ) represents the estimated effective degree of freedom
(EDF).
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Estimating smoothing parameters (2)

each working penalized linear model of the P-IRLS iteration,
νu (λ) is minimized w.r.t. λ (performance iteration).
The two steps:

Step 1 Obtain an estimate of β∗ via:

β∗(t+1) = argmax
β∗

`∗(β∗).

Step 2 Obtain an estimate of λ via:

λ(t+1) = argmin
λ

νu (λ) .

The two steps of estimations above are iterated until convergence is
met.

Here, we employ the computational approach developed by
Wood [2004] to minimize the UBRE or GCV scores.
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Simulation Study (1): a semiparametric bivariate probit model

The simulation study was based on the model:

y∗
i1 = β(1)1 + β(1)2 xi2 + f(1)3(xi3) + f(1)4(xi4) + εi1,

y∗
i2 = β(2)1 + β(2)2 xi2 + f(2)3(xi3) + f(2)4(xi4) + εi2,

The binary responses yi1 and yi2 are determined according to
the rule: {

yij = 1 if y∗ij > 0

yij = 0 if y∗ij ≤ 0
; j = 1, 2.

The three test functions, f(1)3(xi3) = cos(2πxi3),

f(2)3(xi3) = 2 sin(πxi4) and f(1)4(xi4) = f(2)4(xi4) = 0xi4.

Three uniform covariates on (0, 1) were simulated.
The error terms (εi1, εi2) :(

εi1
εi2

)
iid∼ N

([
0
0

]
,

[
1 ρ
ρ 1

])
.
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Simulation Study (2): a semiparametric bivariate probit model

sample size
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Figure: Boxplots of the MSE of f̂(1)3, f̂(2)3, f̂(1)4, and f̂(2)4, when employing the P-spline VGAM

approach. The numbers .1, .5, .9 in the y-axis captions denote the three different correlations, ρ.
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Simulation Study (3): a semiparametric bivariate probit model

sample size
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Figure: Boxplots of the difference in MSE between the P-spline VGAM approach and the VGAM

approach of f̂(1)3, f̂(2)3, f̂(1)4, and f̂(2)4. Negative values indicate that the new approach performs better

than the alternative.
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Examples: Mackerel egg survey (1)
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Figure: Observed mackerel eggs densities per

square metre of sea surface as assessed by net

samples.

The data from 1992
mackerel egg survey

The response of interest is
the egg counts (egg.count).
The covariates of interest
are:
- latitude (lat),
- longitude (lon)
- water temperature at a depth
of 20m (temp.20),
- the sea bed depth at the
sampling location (b.dept),

- distance from 200m sea bed

contour (c.dist).

***Borchers et al. [1997] and
Wood [2006]
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Examples: Mackerel egg survey (2)

An additive Poisson model is fitted to the count response
(egg.count), with a mean given by

E [egg.counti ] = gi × [net area]i ,

where gi is the density of eggs, per square metre of sea surface, at i th sampling

location.

log(E [egg.counti ]) = fi + log([net area]i ),

where fi = log(gi ).

fit.ps1 <- psvgam(egg.count ~ ps(lat , 5) + ps(lon , 5) +
ps(temp .20m, 5) + ps(b.depth , 5) +
ps(c.dist , 5) + offset(log.net.area),
data = mack1 , family = poissonff)
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Examples: Mackerel egg survey (3)

The dispersion parameter estimate indicates the existence of
overdispersion in this data set.

Trying the negative binomial distribution:

fit.ps2 <- psvgam(egg.count ~ ps(lat , 5) + ps(lon , 5) +
ps(temp .20m, 5) + ps(b.depth , 5) +
ps(c.dist , 5) + offset(log.net.area),
data = mack1 , family = negbinomial)

The negative binomial model is more appropriate than the
Poisson model.
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Examples: Mackerel egg survey (4)

Estimated smooth terms for the mackerel model fit.ps2.
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Examples: Mackerel egg survey (5)
Model Predictions
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Figure: (a) Observed mackerel eggs densities per square metre of sea surface as assessed by net

samples. (b) Predicted log densities of mackerel eggs over the survey area, according to the model

fit.ps1.
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Examples: Cat and dog data (1)

Let’s investigate how the probability of having a household cat and
a household dog is related to people’s ages.

We fit a nonparametric bivariate logistic model to the example
of cat and dog pet ownership presented by Yee [2015].
For homogeneity, we restrict the analysis to a subset of 2569
European women and remove any missing values.

η1 = logit P (Y1 = 1|x2) = β(1)1 + f(1)2(x2),

η2 = logit P (Y2 = 1|x2) = β(2)1 + f(2)2(x2),

η3 = log ψ = β(3)1 + f(3)2(x2), (15)

where ψ is the odds ratio.

fitps.cd1 <- psvgam(cbind(cat , dog) ~ ps(age , 15),
binom2.or(zero = NULL),
data = women.eth0.catdog)
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Examples: Cat and dog data (2)

Plots of fitted component functions, according to the model fitps.cd1.

20 40 60 80

−2

−1

0

1

(a)
age

ps
(a

ge
, 1

5)
:1

20 40 60 80

−3

−2

−1

0

(b)
age

ps
(a

ge
, 1

5)
:2

20 40 60 80

−1

0

1

2

3

(c)
age

ps
(a

ge
, 1

5)
:3

Chanatda Somchit (UoA) P-Spline VGAMs 1 December 2015 30 / 32



Examples: Cat and dog data (3)
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Figure: Estimated probabilities for all four combinations (both cats and dogs, cats only, dogs only,

and no cats or dogs) of a subset of European women using the P-spline VGAM approach.
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