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Vector regression

Often more than one response variable of interest.

E.g. (GDP per head, Fertility rate) may be jointly associated with
percentage population in urban areas.

E.g. Song (2007) models (Burn severity, Incidence of death) jointly as
function of age of patient

Main obstacle for vector regression – difficult to specify appropriate joint
response distributions for the data, especially for vectors of mixed type.
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Vector regression

Specialised bivariate models do exist:

Continuous–continuous response pairs: (Y1,Y2|X1,X2) ∼ N2(µ,Σ),
where

µ1 = µ1(XT
1 β1), µ2 = µ2(XT

2 β2)
Σ typically constant for all X1,X2,
but can be Σ = Σ(µ1, µ2, γ) in general
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Vector regression

Count–count response pairs:

There is no widely-accepted general
bivariate Poisson distribution... handling both positive and negative
correlations.
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Vector regression

Binary–continuous response pairs:

Perhaps specify (Song, 2007)

Y1 marginally Binomial(p1), Y2 marginally normal N(µ2, σ
2) ;

a 2× 2 association matrix (not interpretable as correlation matrix)
between Y1 and Y2 ;

a copula function to combine marginal distributions and association
matrix into a joint distribution.

Mixed response types are particularly difficult to model. Model
misspecification can happen on these three levels.

The state-of-the-art vglm function in the vgam R package (Yee, 2015)
currently has no scope for handling mixed responses...
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A parsimonious approach

Classical assumptions:

Marginal mean models

Marginal distributions /variance functions

Association matrix

Copula function

Our assumptions:

Marginal mean models

Data come from some multivariate exponential family that needs not
be specified; parameter space is all multivariate exponential families
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Example 1: GDP, fertility and urban percentage

Weisberg (2006) describes dataset on GDP per head, fertility rate and
percentage of population in urban areas for 193 UN countries.
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Example 1: GDP, fertility and urban percentage

We might be interested in how percentage of urban population affects
both (logPPgdp, logFertility).

Let’s specify marginal linear mean model for both responses

E ( logPPgdp|Purban) = β10 + β11Purban

E (logFertility |Purban) = β20 + β21Purban .

We also assume that the joint distributions

F (logPPgdp, logFertility |Purban) ∼ some bivariate exponential family

but we do not have to specify which particular family – this will be
estimated from data using maximum non-parametric likelihood.
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Example 1: GDP, fertility and urban percentage

To fit this model, use MATLAB function
bspglm(y1,y2,x1,x2,link1,link2)

[beta, maxloglik, fitted, iter, phat] = bspglm(logPPgdp,

logFertility, Purban, Purban, ‘id’,‘id’)

beta{1}
6.9924 0.0730

beta{2}
1.7219 -0.0125

That is, Ê (logPPgdp|Purban) = 6.9924 + 0.0730 ∗ Purban

Ê (logFertility |Purban) = 1.7219− 0.0125 ∗ Purban
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Example 1: GDP, fertility and urban percentage

We can visualise our fitted model using (a primitive) plot.F() function.
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Visualising an empirical probability mass function on R2 is hard...
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What is the model?

We assume that response vector Y given covariates X come from some
multivariate exponential family, that is,

dF (y|X ) ∝ exp
[
θTy

]
dF (y) ,

for some underlying joint distribution F with density dF .

Underlying distribution F controls the “shape” of the exponential family

Includes the multivariate normal as special case.

F can be zero-inflated, multimodal, mixed measured, etc...

Contains infinitely many models, one for each underlying distribution F .

Key innovation: We leave underlying joint distribution F unspecified in
the model, to be estimated non-parametrically from data.
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The model

dF (y|X ) ∝ exp
[
θTy

]
dF (y)

Canonical parameter vector θ ≡ θ(X ;β,F ) controls the mean of F (y|X ):

E (Y|X ) =

∫
y exp

[
θTy

]
dF (y)∫

Rd exp [θTy] dF (y)
=

 µ1(XT
1 β1)
...

µd(XT
d βd)
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Estimation and inference via empirical likelihood

To estimate the underlying joint distribution F , we replace F with a set of
probability masses {p1, . . . , pn} on the observed support {Y1, . . . ,Yn}.

We then maximise the empirical likelihood in both β and p.

Completely nonparametric – no smoothing parameters or choice of bases

Retains properties of parametric maximum likelihood estimation:

consistency;

asymptotic efficiency;

asymptotic normality;

χ2 likelihood ratio tests. (see Huang, 2015 for more details).
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Example 2: burns injury data

Song (2007) examines the relationship between patient age (in months)
and a continuous–binary response vector (burn severity, incidence of
death).

Model:

E (burn severity|age) = β10 + β11age

P(death|age) =
exp(β20 + β21age)

1 + exp(β20 + β21age)

(burn severity, death|age) ∼ some bivariate exponential family

We fit this using
[beta1, maxloglik1] = bspglm(burn, death, age, age,

‘id’,‘logit’)
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Example 2: burns injury data

The fitted model is

Ê (burn severity|age) = 6.631 + 0.003 age

P̂(death|age) =
exp(−3.737 + 0.044 age)

1 + exp(−3.737 + 0.044 age)

Song (2007) interested in testing whether age is related to burn severity,
H0 : β11 = 0.

Fit model without age for burn severity,
[beta0, maxloglik0] = bspglm(burn, death, 1, age,

‘id’,‘logit’)

The p-value for the test is

P(χ2
1 ≥ 2(maxloglik1−maxloglik0)) = 0.436.
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Example 2: burns injury data

Can also test the compound hypothesis that age has no relationship with
both burn severity and incidence of death, H0 : β11 = β21 = 0.

Fit model without age for both components,
[beta00, maxloglik00] = bspglm(burn, death, 1, 1,

‘id’,‘logit’)

The p-value for the test is

P(χ2
2 ≥ 2(maxloglik1−maxloglik00)) < 0.001.

So, incidence of death is associated with age, but burn severity is not.

Alan Huang (UQ) Vector regression 1 Dec, 2015 13 / 16



Example 2: burns injury data

Can also test the compound hypothesis that age has no relationship with
both burn severity and incidence of death, H0 : β11 = β21 = 0.

Fit model without age for both components,
[beta00, maxloglik00] = bspglm(burn, death, 1, 1,

‘id’,‘logit’)

The p-value for the test is

P(χ2
2 ≥ 2(maxloglik1−maxloglik00)) < 0.001.

So, incidence of death is associated with age, but burn severity is not.

Alan Huang (UQ) Vector regression 1 Dec, 2015 13 / 16



Example 2: burns injury data

Can also test the compound hypothesis that age has no relationship with
both burn severity and incidence of death, H0 : β11 = β21 = 0.

Fit model without age for both components,
[beta00, maxloglik00] = bspglm(burn, death, 1, 1,

‘id’,‘logit’)

The p-value for the test is

P(χ2
2 ≥ 2(maxloglik1−maxloglik00))

< 0.001.

So, incidence of death is associated with age, but burn severity is not.

Alan Huang (UQ) Vector regression 1 Dec, 2015 13 / 16



Example 2: burns injury data

Can also test the compound hypothesis that age has no relationship with
both burn severity and incidence of death, H0 : β11 = β21 = 0.

Fit model without age for both components,
[beta00, maxloglik00] = bspglm(burn, death, 1, 1,

‘id’,‘logit’)

The p-value for the test is

P(χ2
2 ≥ 2(maxloglik1−maxloglik00)) < 0.001.

So, incidence of death is associated with age, but burn severity is not.

Alan Huang (UQ) Vector regression 1 Dec, 2015 13 / 16



Example 2: burns injury data

Can also test the compound hypothesis that age has no relationship with
both burn severity and incidence of death, H0 : β11 = β21 = 0.

Fit model without age for both components,
[beta00, maxloglik00] = bspglm(burn, death, 1, 1,

‘id’,‘logit’)

The p-value for the test is

P(χ2
2 ≥ 2(maxloglik1−maxloglik00)) < 0.001.

So, incidence of death is associated with age, but burn severity is not.

Alan Huang (UQ) Vector regression 1 Dec, 2015 13 / 16



Why multivariate exponential families?

Satisfies two basic properties that any vector regression model should
satisfy (Song, 2007):

1. Closed under marginalization: all lower-dimensional regression
models have same distributional form.

2. Arbitrary associations: allows for both positive and negative
associations between components of Y.
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Why multivariate exponential families?

3. Nonconstant variance-covariance structure is the norm.

4. Gourieroux et al (1984): Regardless of data-generating mechanism, any
exponential family likelihood always produces strongly consistent estimates
of mean parameters. Exponential family likelihoods are the only ones that
can do this...!

5. Hiejima (1997): Any mean-variance relationship can be approximated
asymptotically well by some exponential family.
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