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Notation

y = (y1, ..., yn), observations with density p(y)

θ ∈ RI d , parameter vector

p(y |θ), the model

p(θ), prior

z , future realizations from true distribution of y .

D(θ) = −2 log p(y |θ), deviance function
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DIC, the Dirty Information Criterion
Widely used: Spiegelhalter et al. (2002) > 6 500 cites.

DIC can be written as
DIC = D(θ) + p ,

where p is a penalty term to correct for using the data twice.

A Taylor series expansion of D(θ) around θ = Eθ|y [θ] “suggests” that p can be

estimated as the posterior expected value of D(θ)− D(θ), giving

pD = D(θ)− D(θ) .

Not invariant to re-parameterization due to use of θ. ///

pD can be negative if deviance is not concave. ///

Never explicitly stated what DIC is trying to estimate!!!

Russell Millar University of Auckland Predictive loss Dec 2015 3 / 18



WAIC, Widely Applicable Information Criteria

Sumio Watanabe (2009) developed a singular learning theory derived using
algebraic geometry results developed by Heisuke Hironaka (who earned a Fields
medal in 1970 for his work).

It is assumed that p(yi |θ) are independent.

Watanabe defines several WAIC variants. One particular variant has gained
popularity due to:

It’s asymptotic equivalence with Bayesian leave-one-out cross-validation
(LOO-CV), Watanabe (2010).

It’s high degree of approximation to its target loss
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WAIC, Widely Applicable Information Criteria

WAIC = −2
n∑

i=1

log p(yi |y) + 2V

= = −2
n∑

i=1

log

∫
p(yi |θ)p(θ|y)dθ + 2V ,

where

V =
n∑

i=1

Varθ|y (log p(yi |θ)) .

Watanabe showed that EY [WAIC] is an asymptotically unbiased estimator of
EY (B) where

B = −2
n∑

i=1

EZi [log pi (zi |y)] = −2
n∑

i=1

EZi

[
log

∫
p(zi |θ)p(θ|y)dθ

]
.

This holds under very general conditions, including for non-identifiable, singular
and unrealizable models.

For regular realizable models, V → d .
Russell Millar University of Auckland Predictive loss Dec 2015 5 / 18



LOO-CVL, Leave-one-out Cross-validation

Letting y−i denote the observations with yi removed, a natural approximation for
B is the LOO-CVL estimator

CVL =
n∑

i=1

CVLi ,

where

CVLi = −2 log p(yi |y−i )

= −2 log

∫
p(yi |θ)p(θ|y−i )dθ . (1)

CVL has asymptotic bias of O(1/n) as an estimator of B.

But, direct estimation of CVL can be very computationally intensive since it
requires samples from n posteriors p(θ|y−i ), i = 1, ..., n. This direct estimator

will be denoted ĈVL.
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Russell Millar University of Auckland Predictive loss Dec 2015 6 / 18



Importance sampling approximation to LOO-CVL

p(yi |y−i ) can be expressed as the harmonic mean of p(yi |θ) with respect to the
full posterior,

p(yi |y−i ) =

(∫
1

p(yi |θ)
p(θ|y)dθ

)−1
,

and so p(yi |y−i ) can be estimated as

p̂(yi |y−i ) =
S∑S

s=1
1

p(yi |θ(s))

, (2)

where θ(s), s = 1, ...,S , is a sample from p(θ|y). Thus, each CVLi , i = 1, ..., n
and hence CVL =

∑n
i=1 CVLi can be estimated from a single posterior sample.

The importance-sampling estimator of CVL will be denoted ÎSCVL.

Note that (2) can be highly unstable when θ(s) is in the tails of p(yi |θ(s)).
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Importance sampling approximation to LOO-CVL

It is very useful to quantify the reliability of importance sampling using the notion
of effective sample size. The effective sample size is with respect to a sample
from p(θ|y−i ) for evaluating CVLi using (1).

For observation i , ESSi can be calculated as

ESSi =
nwi

2

w2
i

,

where wsi = p(yi |θ(s))−1 and wi is the mean of the weights wsi , s = 1, ...,S , and

w2
i is the mean of the squared weights w2

si , s = 1, ...,S .
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Evaluation of predictive loss

Recent work has examined the relative performance of WAIC, CVL and IS-CVL in
the context of normal models.

I have been examining their performance with regard to:

Model focus (i.e., level of hierarchy at which likelihood is specified).

Use with non-normal data.

Models for over-dispersed count data incorporate both of these issues.

E.g., the negative binomial density can be expressed directly (marginal focus), or
as a Poisson density conditional on an underlying gamma latent variable
(conditional focus).
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Evaluation of predictive loss, y ∼ Pois(λ)
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WAIC approximation not so good until normal approximation (to Poisson) kicks
in at around λ0 = 5.
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Evaluation of predictive loss, y ∼ Pois(λ)

FYI, the underlying R code to numerically evaluate B for y ∼ Pois(λ0).

BayesLoss=function(y,lambda0,alpha=0.001,beta=0.001) {

yrep_limits=qpois(c(1e-15,1-1e-15),lambda0)

yrep_grid=seq(yrep_limits[1],yrep_limits[2]) #Grid of values for reps

grid_probs=dpois(yrep_grid,lambda0) #Probabilities over the grid

grid_pd=dnbinom(yrep_grid,size=y+alpha,mu=(y+alpha)/(beta+1)) #Pred density

BLoss=-2*sum(grid_probs*log(grid_pd)) #Predictive loss, B, for a given y

return(BLoss) }
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Simulation study with over-dispersed count data

How well can the predictive criteria distinguish the following three models?

Poisson: yi |µ ∼ Pois(µ)

PGA: yi |λi ∼ Pois(λi ) where λi ∼ Γ(α, α/µ)

PLN: yi |λi ∼ Pois(λi ) where λi ∼ LN(log(µ)− 0.5τ 2, τ 2)

These are conditional-level specifications.

For the PLN the marginal-level likelihood is

p(yi |µ, τ) =

∫ (
e−λiλyii

yi !

)(
e−(log λi−ν)2/2τ 2

√
2πτλi

)
dλi ,

where ν = log(µ)− 0.5τ 2.

...or just dpoilog(y[i],nu,tau) in R.
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Simulation study with over-dispersed count data

The simulation generated yi , i = 1, ..., 160 from each of the three models (using
µ = 1 and τ = 1.5), and fitted each of the three models to these data.

ŴAICc and ÎSCVLc denote the predicted losses estimated using conditional-level
likelihood.

Denoted ŴAICm and ÎSCVLm at marginal level.

It can be shown that:

CVLc and CVLm are identical, and are valid approximations to Bm.

WAICm is a valid approximation to Bm.

WAICc may, or may not, be a valid approximation to Bc .
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Simulation study: Conditional-level comparison

True Fitted model Propn minimum
model Criterion P PGA PLN P PGA PLN

P ÎSCVLc 419.1 419.6 419.5 0.83 0.10 0.07

ŴAICc 419.1 419.0 419.1 0.60 0.28 0.12
minESS 4612 207 1359

PGA ÎSCVLc 731.0 272.8 291.2 0.00 0.99 0.01

ŴAICc 730.9 219.4 240.1 0.00 1.00 0.00
minESS 188 2 2

PLN ÎSCVLc 643.5 374.5 377.4 0.00 0.66 0.34

ŴAICc 644.2 319.0 333.5 0.00 1.00 0.00
minESS 23 2 2

Table : Mean values (over 100 simulations) of ÎSCVL and ŴAIC, and
hierarchical means of minimum ESS, from fitting Poisson (P), Poisson-gamma
(PGA) and Poisson-lognormal (PLN) models to simulated data. The posterior
sample size was 5 000.
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Simulation study: Marginal-level comparison

True Fitted model Propn minimum
model Criterion P PGA PLN P PGA PLN

P ÎSCVLm 419.1 419.6 419.6 0.87 0.06 0.07

ŴAICm 419.1 419.6 419.6 0.87 0.06 0.07
minESS 4612 4439 4424

PGA ÎSCVLm 731.0 345.9 351.2 0.00 0.94 0.06

ŴAICm 730.9 345.9 351.2 0.00 0.94 0.06
minESS 188 1070 4166

PLN ÎSCVLm 643.5 412.8 406.6 0.00 0.20 0.80

ŴAICm 644.2 412.6 406.5 0.00 0.20 0.80
minESS 23 40 952

Table : Mean values (over 100 simulations) of ÎSCVL and ŴAIC, and
hierarchical means of minimum ESS, from fitting Poisson (P), Poisson-gamma
(PGA) and Poisson-lognormal (PLN) models to simulated data. The posterior
sample size was 5 000.
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Application to counts of goatfish
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Application to counts of goatfish

Fitted model
Criterion P PGA PLN ∆

Conditional

ĈVLc 482.1 349.7 355.1 5.4

ÎSCVLc 479.8 319.9 328.7 8.8

ŴAICc 477.5 273.9 286.0 12.1
min ESS 14.3 4.3 1.5

Marginal

ĈVLm 482.1 349.7 355.1 5.4

ÎSCVLm 479.8 349.6 355.1 5.5

ŴAICm 477.5 348.2 354.5 6.3
min ESS 14.3 189.7 2108.6

Table : ĈVL, ÎSCVL, ŴAIC and minimum effective sample size from fitting
Poisson (P), Poisson-gamma (PGA) and Poisson-lognormal (PLN) models to
goatfish count data. ∆ gives the difference between the PGA and PLN losses.
The posterior sample size was 10 000.
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Summary: Take home advice

Use marginal-level likelihood where possible (it has fatter tails than
conditional-level likelihood).

Here, ĈVLc was reliable at conditional level.

Be sure to check effective sample size if using ÎSCVL (an ESS in the 100’s
appeared to be enough).

Regularized forms of ÎSCVL were examined, but did not provide any
improvement.

It is a good idea to evaluate both ÎSCVL and ŴAIC - and hope that they
are little different (since they are different approximations to the same
thing).

WAIC can be unreliable if Varθ|y (log p(yi |θ)) > 1 for any i (this corresponds
to a high influence point and the underlying WAIC approximation to B is
liable to be inaccurate).
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