## Sliding Through Phylogenetics

### Daisy Shepherd

The University of Auckland dshe078@aucklanduni.ac.nz

01/12/2015



## Outline

- 1 Introduction & Motivation
- 2 Study Design
- Results
- Conclusions & Future Work

# What is Phylogenetics?

- All organisms have DNA.
- Map the differences in DNA.
- How closely related are these groups?
- **Aim:** Derive their evolutionary history.



# What is Phylogenetics?

- All organisms have DNA.
- Map the differences in DNA.
- How closely related are these groups?
- Aim: Derive their evolutionary history.





#### The Problem

- Sites evolve over time in a number of ways.
- Usually assume each site evolves at a similar rate.

Species 1: ACTACGTACGAT...
Species 2: CTGAGATCGCGA...
Species 3: ACACTGACACGT...
Species 4: AATTCCGTGATC...
Species 5: ACGATATGCTCG...
Species 6: GTF ACACATTA...

However, this is not always the case...

Some sites change quickly...

... whilst others change slowly....



## Rates-across-sites



## So why is this a problem?

- Models need to detect and handle this heterogeneity.
- Poorly fitting models lead to poor estimation of evolutionary relationships.



## The Current Approach

- When selecting a model (homogeneous vs. heterogeneous), usually look at the whole alignment.
- Heterogeneous model one estimate for the rate parameter  $\gamma$ .



#### Complete alignment analysis

(Traditional approach) Single analysis

- √ Simple and quick
- √ Common practice, so widely applied in software
- × Generalises behaviour across all sites

## The Proposed Solution



#### How does it work?

- Look at the first n sites.
- 2 Fit a model to only this window of sites.
- $\bigcirc$  Slide window along p sites, to a new group of n sites.
- Fit a model to this new window.
- Sepeat until entire alignment has been covered.



#### Sliding Window analysis

(Our proposed approach) Multiple analyses

### What did we want to do?



#### Complete alignment analysis

(Traditional approach) Single analysis

#### Sliding Window analysis

(Our proposed approach) Multiple analyses

**Aim:** Test whether the Sliding Window approach improves our ability to detect variation in evolutionary rates.

# Data and Methodology

#### 1. The Data:

Simulated 300 alignments (5000 sites)



- 10, 50 and 100 taxa
- ullet Random  $\gamma$  parameter values used for hetero model
- Generated random topologies
- Random insertion point (for hetero region into alignment)
- Window size n = 500 sites
- Step size p = 50 sites

# Data and Methodology

### 2. Testing:

- i. Perform a complete alignment analysis.
- ii. Implement the Sliding Window (SW) approach.
- iii. Compare the results.

## 3. What are we looking for?

- Are heterogeneous or homogeneous rates detected?
- Accurate estimate of the rate?
- Is the SW approach an improvement?

#### Complete Alignment Analysis

Based on p-values from the likelihood ratio test:

| Taxa Number                                          | n   | Accept H <sub>0</sub> | Reject H <sub>0</sub> |
|------------------------------------------------------|-----|-----------------------|-----------------------|
| 10                                                   | 100 | 25                    | 75                    |
| 50                                                   | 100 | 20                    | 80                    |
| 100                                                  | 100 | 0                     | 100                   |
| H <sub>0</sub> : Homogeneous model is the true model |     |                       |                       |

Table: The number of simulations which accepted and rejected the null hypothesis under the complete alignment analysis.

Did not detect varying rates in 15% of the alignments.

#### Sliding Window Analysis

## 1. Were the heterogeneous regions detected?

LRT comparing homogeneous vs. heterogenous model. (Complete alignment analysis favoured **hetero**geneous model.)



#### Sliding Window Analysis

## 1. Were the heterogeneous regions detected?

LRT comparing homogeneous vs. heterogenous model. (Complete alignment analysis favoured **homo**geneous model.)



#### Sliding Window Analysis

## 1. Were the heterogeneous regions detected?

Difference in AIC, BIC comparing homogeneous vs. heterogenous model.



#### Sliding Window Analysis

#### 2. How accurate was the rate estimate?

Recovered from fitting heterogeneous model.



### What did we find?

- √ SW approach detected heterogeneous rates consistently.
- ✓ Detected in more situations than under traditional approach.
- √ Strong benefits from profiling an alignment.
- ✓ Better overall detection of rate heterogeneity.

### Conclusions

#### Overview: The Sliding Window Approach

#### Strengths:

- ✓ Gain a deeper insight into the true behaviour of the alignment.
- ✓ Allows multiple analyses which better detect any pattern variation (rates, topology etc. )

#### Weaknesses:

- Choosing an appropriate window and step size can be tricky.
- Computation time can be high.

- SW approach is undoubtedly a useful tool.
- Potential to better detect heterogeneity, and to improve the statistical models we use.

### Where to from here?

- ⇒ Continue to test the SW approach in other phylogenetic applications (outlier detection, different forms of heterogeneity).
- ⇒ Create software to make the SW approach more accessible.
- ⇒ Finding optimal window and step sizes?

# Acknowledgements

Steffen Klaere



Jessica Leigh

