

SCIENCE DEPARTMENT OF STATISTICS

Visualizing Population Genetics

Supervisors: Rachel Fewster, James Russell, Paul Murrell

Louise McMillan

1 December 2015

Outline

1 Background and Motivation

2 Characterising Genetic Distribution of Population

3 Saddlepoint Approximation within GenePlot

4 Further Work

Assignment

- Uses genetic data (microsatellites or Single Nucleotide Polymorphisms (SNPs))
- ► Compare individuals to populations
- ▶ Infer likely source populations

Post-eradication Assignment

Post-eradication Assignment

Post-eradication Assignment

▶ Baseline samples from each possible source population

► Estimate microsatellite allele frequencies of candidate source populations using baseline sample

Dirichlet prior for allele frequencies

$$m{p} \sim \mathsf{Dirichlet}(au, au, \ldots, au)$$

 Combine Dirichlet prior and multinomial data to get Dirichlet posterior for baseline allele frequencies

$$\boldsymbol{p} \sim \text{Dirichlet}(x_1 + \tau, x_2 + \tau, \dots, x_k + \tau)$$

- Compare alleles from new sample with allele frequencies for candidate source population
- ► Calculate Log Genotype Probability (LGP) using Dirichlet Compound Multinomial (DCM) distribution
- ► Probability of obtaining individual's genotype from multinomial distribution with estimated allele proportions as probabilities

$$\mathbb{P}(\mathbf{a}) = \begin{cases} \frac{(x_r + \tau)(x_r + \tau + 1)}{(n+1)(n+2)} & a_r = 2, \ a_j = 0 \text{ for } j \neq r \\ \frac{2(x_r + \tau)(x_s + \tau)}{(n+1)(n+2)} & a_r = a_s = 1, \ a_j = 0 \text{ for } j \neq r, s \end{cases}$$

- ► Combine over all loci to get overall Log Genotype Probability (LGP)
- Calculate for each candidate source population
- Assign individual to population with highest LGP
- ► OR only assign if individual has assignment score above threshold for at least one population

► Starred points indicate individuals with missing data

Alternative Assignment Methods

- ► GENECLASS2 (Piry et al. 2004) and GenePlot use the above method
- ▶ STRUCTURE (Pritchard et al. 2000) uses same Dirichlet posterior for allele frequencies and same LGP calculations
- But STRUCTURE performs clustering, using MCMC to sample from distribution of population membership combinations

GenePlot Method for Missing Data

- Not all DNA samples replicate correctly
- ▶ Individual may have missing data at one or more loci
- ► Calculate LGP for non-missing loci
- But LGP will be on different scale than LGP for individuals with all loci

- Calculate LGP for non-missing loci
- ► Find corresponding quantile in full-loci distribution
- Requires characterisation of full-loci and reduced-loci distributions for all candidate source populations
- ► Distribution is sum of distributions from each locus, difficult to characterise

- Possible to simulate individuals from each population using allele frequencies
- Distribution of genotype probabilities can be estimated from simulated data
- Slow to calculate, non-repeatable results
- Unreliable in long lower tail of distribution

- Alternative method is to approximate population genetic distribution analytically
- ► Saddlepoint approximation method achieves this with high accuracy

Saddlepoint Approximation

- ▶ Initial motivation for the saddlepoint approximation:
- \triangleright Set of random variables X_1, X_2, \dots, X_n with known distributions
- ▶ What is the distribution of their sum, X_{tot} ?

Saddlepoint Approximation

- ▶ PDF approximation derived by Daniels in 1954
- ► CDF approximation derived by Lugannani & Rice in 1980
- Can approximate any distribution, not just sums
- ► Approximations rely on the cumulant generating function (CGF)
- Overall CGF is sum of component CGFs

Multilocus Genetic Distribution

- Distribution of genotype probabilities in a population
- ▶ MGF at a single locus is given by:

$$M(t) = \sum_{i=1}^{n} P(Y = y)e^{ty}$$
$$= \sum_{i=1}^{n} p_i e^{t \log p_i}$$
$$= \sum_{i=1}^{n} p_i^{t+1}$$

 \triangleright p_i are the probabilities of the possible genotypes at that locus.

Multilocus Genetic Distribution

Derivatives of the MGF are given by:

$$M^{(r)}(t) = \sum (\log p_i)^r p_i^{t+1}$$

▶ Overall CGF and derivatives are sums of those at each locus

Multilocus Genetic Distribution

► Saddlepoint CDF formula:

$$\hat{F}(x) = \left\{ \begin{array}{ll} \Phi(\hat{w}) + \phi(\hat{w})(1/\hat{w} - 1/\hat{u}) & \text{if } x \neq \mu \\ \frac{1}{2} + \frac{K'''(0)}{6\sqrt{2\pi}K''(0)^{3/2}} & \text{if } x = \mu \end{array} \right\}$$

where

$$K'(\hat{s}) = x$$

$$\hat{w} = \operatorname{sign}(\hat{s}) \sqrt{2(\hat{s}x - K(\hat{s}))}$$

$$\hat{u} = \hat{s} \sqrt{K''(\hat{s})}$$

Test against Generated Samples

- ▶ Generate 100,000 samples from multilocus distribution
- ► Calculate empirical CDF
- ► Compare with saddlepoint approximation

Test against Generated Samples

Test for Simulated Populations

► Calculate sum of squared differences over 1000 points for different numbers of loci

- Calculate LGP for non-missing loci
- ► Find corresponding quantile in full-loci distribution
- Requires characterisation of full-loci and reduced-loci distributions for all candidate source populations
- ► Distribution is sum of distributions from each locus, difficult to characterise

GenePlots

▶ LGP results for each individual, with respect to all source populations, can be plotted on a graph

Further Work

- Simulate scenarios to test for bias in assignment results
- Investigate relatedness within populations and effects on assignment accuracy
- Online version of GenePlot:

https://lmcm177.shinyapps.io/geneplot-on-the-web

References

B. Rannala and J. L. Mountain (1997)

Detecting immigration by using multilocus genotypes

Proceedings of the National Academy of Sciences USA, Vol. 94.

S. Piry et al (2004) GENECLASS2: A Software for Genetic Assignment and First-Generation Migrant Detection.

Journal of Heredity, Vol. 95 (Issue 6).

J. K. Pritchard, M. Stephens and P. Donnelly (2000) *Inference of Population Structure Using Multilocus Genotype Data*.

Genetics, Vol. 155.

H. E. Daniels (1954) *Saddlepoint Approximations in Statistics*. The Annals of Mathematical Statistics, Vol. 25.

R. Lugannani and S. Rice (1980) *Saddle point approximations for the distribution of the sum of independent random variables*. Advances in Applied Probability, Vol. 12.

C. Goutis and G. Casella (1999) Explaining the Saddlepoint Approximation. The American Statistician, Vol. 53.

Acknowledgements

Many thanks to my supervisors, particularly Rachel Fewster