

Fitting linear mixed models under misspecification

Jin Yoon* Alan Welsh[†]

Statistical Consulting Unit* The Australian National University

Mathematical Sciences Institute[†] The Australian National University

December 2015

How much believe in LMM?

- ► Linear mixed model (LMM) is one of the most popular statistical methods and being used without a doubt
- What if LMM does not give right estimates ?

Examples (a)

- Enzyme kinetics data
- ▶ n = 8 measurements on four mutant mice and one wild type mouse (m = 5) of kinetics (Y) and the current (X)
- ▶ REML based on Ime4 in R and REML on our method
- ▶ Between cluster variance of the current (X) is $\hat{\tau}_{x} = 0.397^{2}$

Examples (b)

- Sixth Grade data
- n = 10 measurements on m = 19 different schools of mathematics score (Y) and the socio-economic status (X)
- ▶ REML based on Ime4 in R and REML on our method
- ▶ Between cluster variance of the socio-economic status (X) is $\hat{\tau}_{x} = 14.645^{2}$

Examples cont.

ightharpoonup Why ? ightharpoonup fit misspecified model: unintentionally, because the true model is unknown and intentionally in either informal model exploration or formal model selection

Profile log-likelihood (a)

Linear mixed model

Classic LMM

$$Y_{ii} = \beta_0 + \beta_c X_{ii} + \delta_i + \epsilon_{ii},$$

where (β_0, β_c) the unknown regression parameters and $(\delta_i, \epsilon_{ij})$ an unobserved random intercept and random error.

LMM cont.

lacktriangle Contextual LMM $(ilde{X}_{ij} = X_{ij} - ar{X}_i)$

$$Y_{ij} = \beta_0^* + \beta_w \tilde{X}_{ij} + \beta_b \bar{X}_i + \delta_i^* + \epsilon_{ij}^*,$$

where (β_w, β_b) the within- and between-group regression parameters and $(\delta_i^*, \epsilon_{ij}^*)$ an unobserved random intercept and random error.

Misspecification

- ▶ When $\beta_b \beta_w \neq 0$, LMM is missepecified due to omitting the group level confounder \bar{x}_i that is, clustering in x_i is ignored.
- ► Affects the estimates of the variance components not just, the estimates of the regression parameters

Result

- ► Fitting LMM when CLMM is true model can lead to very misleading assessments of the association between *Y* and *X*
- ▶ Change LS and WLS estimators of the regression parameters smoothly as changing between cluster variance of X, τ_X
- but jump ML and REML estimators of the regression and variance components.

Result cont.

▶ The reason for the jumps in ML and REML estimators: as $\tau_x \uparrow$, the ML and REML criterion develop two distinct local maxima and which of these is the global maximum changes at the jump point.

Mean squared errors

Thank you!