Hierarchical Joint Effects Selection in Mixed Models

Francis Hui (ANU) Samuel Muller (USYD) Alan Welsh (ANU)

Aims of this talk:

- → Generalized Linear Mixed Models (GLMMs)
- → Penalized Likelihood Methods
 - → What's been done for penalized variable selection in GLMMs?
- → The CREPE Estimator for Joint Selection in GLMMs
 - → Hui et al. Composite Effects Selection in Mixed Models using CREPE. Stat Sinica: In review.

Generalized Linear Mixed Models (GLMMs)

Over many years...

Has tree experienced defoliation?
1 = yes; 0 = no

Physical characteristics, soil chemistry, weather etc...

→ Longitudinal dataset

Response matrix

Tree 1

Tree 2

. .

Tree 100

Covariates for tree i = 1,....,n

Year 1 Year 2 ... Year 20

Rainfall

Fertilization

.

Inclination

 $\begin{pmatrix}
1.34 & 1.48 & \dots & 0.79 \\
0 & 1 & \dots & 0 \\
\vdots & \vdots & \vdots & \vdots \\
62 & 62 & \dots & 62
\end{pmatrix}$

Generalized Linear Mixed Models (GLMMs)

- → Longitudinal dataset
 - Has there been a change in forest health over time?
 - What are the important predictors of forest health?

→ Generalized Linear Mixed models

$$g(\mu_{ij}) = \boldsymbol{x}_{ij}^T \boldsymbol{\beta} + \boldsymbol{z}_{ij}^T \boldsymbol{b}_i; \quad i = 1, \dots, n; \ j = 1, \dots, m$$

Population averaged response

Between-cluster variability

$$oldsymbol{b}_i \sim \mathcal{N}(oldsymbol{0}, oldsymbol{\Gamma}oldsymbol{\Gamma}^T)$$

Cholesky decomposition or eigendecomposition

Generalized Linear Mixed Models (GLMMs)

- → Longitudinal dataset
 - What are the important predictors of forest health?

Joint variable selection of fixed and random effects

$$g(\mu_{ij}) = m{x}_{ij}^Tm{eta} + m{z}_{ij}^Tm{b}_i; \quad i=1,\dots,n; \; j=1,\dots,m$$
 Select these two things! $m{b}_i \sim \mathcal{N}(m{0}, m{\Gamma}m{\Gamma}^T)$

- → Some complications...
 - Lots of candidate models
 - How to select the elements of the covariance matrix ②
 - There's a hierarchical structure there: "we usually only consider time-varying covariates that have been included in the fixed effects" (Cheng et al., 2010) ⊕

The CREPE estimator is designed to resolve the three problems above!

- → "Lots" of candidate models ③
 - Well, at least more than the 2^p 1 in GLMs
- → One solution: Add a penalty to the likelihood

$$\hat{\boldsymbol{\beta}} = \arg \max_{\boldsymbol{\beta}} \ \ell(\boldsymbol{\Psi}) - p_{\lambda}(\boldsymbol{\beta}),$$

Tuning parameter

- → Choose a penalty that is non-differentiable at zero => induces sparsity
 - lasso; adaptive lasso; SCAD etc...

→ What's been done for penalized likelihood in GLMMs?

$$g(\mu_{ij}) = m{x}_{ij}^Tm{eta} + m{z}_{ij}^Tm{b}_i; \quad i=1,\dots,n; \; j=1,\dots,m$$
 Penalize these two things!

 $oldsymbol{b}_i \sim \mathcal{N}(oldsymbol{0}, oldsymbol{\Gamma}oldsymbol{\Gamma}^T)$

- → LMMs:
 - M-ALASSO (Bondell et al., 2010)

$$p_{\lambda}(\mathbf{\Psi}) = \lambda \sum_{k} \tilde{w}_{k} |\beta_{k}| + \lambda \sum_{k} \tilde{v}_{k} |[\mathbf{\Gamma}]_{kk}|$$

→ What's been done for penalized likelihood in GLMMs?

$$g(\mu_{ij}) = m{x}_{ij}^Tm{eta} + m{z}_{ij}^Tm{b}_i; \quad i=1,\dots,n; \; j=1,\dots,m$$
 Penalize these two

 $oldsymbol{b}_i \sim \mathcal{N}(oldsymbol{0}, oldsymbol{\Gamma}oldsymbol{\Gamma}^T)$

- → LMMs:

 - ALASSO (Lin et al., 2013)

• M-ALASSO (Bondell et al., 2010)
$$p_{\lambda}(\Psi) = \lambda \sum_{k} \tilde{w}_{k} |\beta_{k}| + \lambda \sum_{k} \tilde{v}_{k} |[\Gamma]_{kk}|$$

Stage 1:
$$p_{\lambda}(\mathbf{\Psi}) = \lambda_1 \sum_{k} \tilde{v}_k |[\mathbf{\Gamma} \mathbf{\Gamma}^T]_{kk}|;$$
 Stage 2: $p_{\lambda}(\mathbf{\Psi}) = \lambda_2 \sum_{k} \tilde{w}_k |\beta_k|$

things!

→ What's been done for penalized likelihood in GLMMs?

$$g(\mu_{ij}) = m{x}_{ij}^Tm{eta} + m{z}_{ij}^Tm{b}_i; \quad i=1,\dots,n; \; j=1,\dots,m$$
 Penalize these two things!

- → LMMs:
 - M-ALASSO (Bondell et al., 2010) $p_{\lambda}(\Psi) = \lambda \sum_{k} \tilde{w}_{k} |\beta_{k}| + \lambda \sum_{k} \tilde{v}_{k} |[\Gamma]_{kk}|$
 - ALASSO (Lin et al., 2013)

Stage 1:
$$p_{\lambda}(\mathbf{\Psi}) = \lambda_1 \sum_k \tilde{v}_k |[\mathbf{\Gamma} \mathbf{\Gamma}^T]_{kk}|;$$
 Stage 2: $p_{\lambda}(\mathbf{\Psi}) = \lambda_2 \sum_k \tilde{w}_k |\beta_k|$

- SCAD-P (Fan and Li, 2012); Iterative (Peng and Lu, 2012)
 - Both two stage process like ALASSO
- → GLMMs:
 - Tweak the M-ALASSO for GLMMs (Ibrahim et al., 2011)

→ A basic problem:

A basic problem:

• M-ALASSO (Bondell et al., 2010)

$$p_{\lambda}(\Psi) = \lambda \sum_{k} \tilde{w}_{k} |\beta_{k}| + \lambda \sum_{k} \tilde{v}_{k} |[\Gamma]_{kk}|$$

- ALASSO (Lin et al., 2013)

$$\text{Stage 1:} \quad p_{\lambda}(\mathbf{\Psi}) = \lambda_1 \sum_k \tilde{v}_k |[\mathbf{\Gamma} \mathbf{\Gamma}^T]_{kk}|; \quad \text{Stage 2:} \quad p_{\lambda}(\mathbf{\Psi}) = \lambda_2 \sum_k \tilde{w}_k |\beta_k|$$

- SCAD-P (Fan and Li, 2012); Iterative (Peng and Lu, 2012)
- Tweak the M-ALASSO for GLMMs (Ibrahim et al., 2011)

All the penalties above treat the selection of fixed and random effects as **separate** processes.

- → A basic problem:
 - M-ALASSO (Bondell et al., 2010) $p_{\lambda}(\Psi) = \lambda \sum_{k} \tilde{w}_{k} |\beta_{k}| + \lambda \sum_{k} \tilde{v}_{k} |[\Gamma]_{kk}|$

 - ALASSO (Lin et al., 2013) Stage 1: $p_{\lambda}(\Psi) = \lambda_1 \sum_{k} \tilde{v}_k |[\mathbf{\Gamma} \mathbf{\Gamma}^T]_{kk}|;$ Stage 2: $p_{\lambda}(\Psi) = \lambda_2 \sum_{k} \tilde{w}_k |\beta_k|$
 - SCAD-P (Fan and Li, 2012); Iterative (Peng and Lu, 2012)
 - Tweak the M-ALASSO for GLMMs (Ibrahim et al., 2011)

All the penalties above treat the selection of fixed and random effects as **separate** processes.

There's a hierarchical structure for longitudinal GLMMs!

"We usually only consider time-varying covariates that have been included in the fixed effects" (Cheng et al., 2010)

- → A basic problem:
 - M-ALASSO (Bondell et al., 2010) $p_{\lambda}(\Psi) = \lambda \sum_{k} \tilde{w}_{k} |\beta_{k}| + \lambda \sum_{k} \tilde{v}_{k} |[\Gamma]_{kk}|$

 - ALASSO (Lin et al., 2013) Stage 1: $p_{\lambda}(\Psi) = \lambda_1 \sum_{k} \tilde{v}_k |[\mathbf{\Gamma} \mathbf{\Gamma}^T]_{kk}|;$ Stage 2: $p_{\lambda}(\Psi) = \lambda_2 \sum_{k} \tilde{w}_k |\beta_k|$
 - SCAD-P (Fan and Li, 2012); Iterative (Peng and Lu, 2012)
 - Tweak the M-ALASSO for GLMMs (Ibrahim et al., 2011)

All the penalties above treat the selection of fixed and random effects as separate processes.

There's a hierarchical structure for longitudinal GLMMs!

→ Design and use a penalty that automatically incorporates this structure!

The CREPE Estimator...ingredients

→ GLMMs

$$g(\mu_{ij}) = \boldsymbol{x}_{ij}^T \boldsymbol{\beta} + \boldsymbol{z}_{ij}^T \boldsymbol{b}_i; \quad i = 1, \dots, n; \ j = 1, \dots, m$$

$$oldsymbol{b}_i \sim \mathcal{N}(oldsymbol{0}, oldsymbol{\Gamma}oldsymbol{\Gamma}^T)$$

- → Fixed effects
 - Adaptive lasso

$$p_{\lambda}(\boldsymbol{\beta}) = \sum_{k} \tilde{w}_{k} |\beta_{k}| \quad \text{where} \quad \tilde{w}_{k} = \tilde{\beta}_{k}^{-\gamma},$$

- → Random effects ②
 - Adaptive group lasso

$$p_{\lambda}(\boldsymbol{\gamma}_k) = \sum_{k} \tilde{v}_k \|\boldsymbol{\gamma}_k\|$$
 where $\tilde{v}_k = \|\tilde{\boldsymbol{\gamma}}_k\|^{-\gamma}$,

Shrinking all elements in row k of the eigendecomposition to zero simultaneously

The CREPE Estimator...ingredients

→ GLMMs

$$g(\mu_{ij}) = \boldsymbol{x}_{ij}^T \boldsymbol{\beta} + \boldsymbol{z}_{ij}^T \boldsymbol{b}_i; \quad i = 1, \dots, n; \ j = 1, \dots, m$$

$$oldsymbol{b}_i \sim \mathcal{N}(oldsymbol{0}, oldsymbol{\Gamma}oldsymbol{\Gamma}^T)$$

- → Fixed effects
 - Adaptive lasso

$$p_{\lambda}(\boldsymbol{\beta}) = \sum_{k} \tilde{w}_{k} |\beta_{k}| \quad \text{where} \quad \tilde{w}_{k} = \tilde{\beta}_{k}^{-\gamma},$$

- → Random effects ②
 - Adaptive group lasso

$$p_{\lambda}(\boldsymbol{\gamma}_k) = \sum_k \tilde{v}_k \|\boldsymbol{\gamma}_k\|$$
 where $\tilde{v}_k = \|\tilde{\boldsymbol{\gamma}}_k\|^{-\gamma}$,

→ One more thing... 😁

Covariates

Composite (fixed and random) effect

The CREPE Estimator

→ GLMMs

$$g(\mu_{ij}) = \boldsymbol{x}_{ij}^T \boldsymbol{\beta} + \boldsymbol{z}_{ij}^T \boldsymbol{b}_i; \quad i = 1, \dots, n; \ j = 1, \dots, m$$

$$oldsymbol{b}_i \sim \mathcal{N}(oldsymbol{0}, oldsymbol{\Gamma}oldsymbol{\Gamma}^T)$$

→ CREPE (Composite Random Effects PEnalty)

Was the covariate included as a composite effect?

$$\ell_{pen}(\boldsymbol{\Psi}) = \ell(\boldsymbol{\Psi}) - \lambda \sum_{k=1}^{p} \tilde{w}_k \sqrt{\beta_k^2 + \mathbb{1}_{\{k \in \alpha_c\}} \tilde{v}_k \|\boldsymbol{\gamma}_k\|},$$

The CREPE Estimator

→ GLMMs

$$g(\mu_{ij}) = \boldsymbol{x}_{ij}^T \boldsymbol{\beta} + \boldsymbol{z}_{ij}^T \boldsymbol{b}_i; \quad i = 1, \dots, n; \ j = 1, \dots, m$$

$$oldsymbol{b}_i \sim \mathcal{N}(oldsymbol{0}, oldsymbol{\Gamma}oldsymbol{\Gamma}^T)$$

→ CREPE (Composite Random Effects PEnalty)

Was the covariate included as a composite effect?

$$\ell_{pen}(\boldsymbol{\Psi}) = \ell(\boldsymbol{\Psi}) - \lambda \sum_{k=1}^{p} \tilde{w}_k \sqrt{\beta_k^2 + \mathbb{1}_{\{k \in \alpha_c\}} \tilde{v}_k \|\boldsymbol{\gamma}_k\|},$$

- → If the covariate is included as a purely fixed effect, CREPE => Adaptive lasso
- → CREPE incorporates the hierarchical nature of the covariates:
 - By design, you're either a fixed effect or composite effect...can't be purely a random effect!!!

CREPE Sims

- → Linear Mixed Models (Gaussian responses)
- → Methods to compare: 1) CREPE, 2) M-ALASSO (Bondell et al., 2010), 3) ALASSO (Lin et al., 2013)

CREPE Sims

- → Linear Mixed Models (Gaussian responses)
- → Methods to compare: 1) CREPE, 2) M-ALASSO (Bondell et al., 2010), 3) ALASSO (Lin et al., 2013)
- $\Rightarrow \qquad p = \dim(\boldsymbol{x}_{ij}) = \lceil 7n^{1/4} \rceil$

 z_{ij} = equals first 8 elements of x_{ij}

$$y_{ij} = \boldsymbol{x}_{ij}^T \boldsymbol{eta}_0 + \boldsymbol{z}_{ij}^T \boldsymbol{b}_i + \epsilon_{ij}$$

$$\beta_0 = (-1, 3, 1.5, 0, 0, 2, 1, 0, 0, 1, 0, 0, -1, \ldots)$$

$$\mathbf{\Gamma}_{0}\mathbf{\Gamma}_{0}^{T} = \begin{pmatrix}
9 & 4.8 & 0 & 0 & 0 & 0 & 0 & 0 \\
4.8 & 4 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 2 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{pmatrix}$$

FP = # of false positives for fixef (overfitting)

FN = # of false negatives for fixef (underfitting)

%RE = percentage of datasets with correct ranef structure

%S = percentage of datasets where non-hierarchical shrinkage occurred

CREPE Sims

- → Linear Mixed Models (Gaussian responses)
- → Methods to compare: 1) CREPE, 2) M-ALASSO (Bondell et al., 2010), 3) ALASSO (Lin et al., 2013)

$$p=\dim(m{x}_{ij})=\lceil 7n^{1/4}
ceil$$
 $m{z}_{ij}= ext{equals first 8 elements of }m{x}_{ij}$ $y_{ij}=m{x}_{ij}^Tm{eta}_0+m{z}_{ij}^Tm{b}_i+\epsilon_{ij}$

FP = # of false positives for fixef (overfitting)

FN = # of false negatives for fixef (underfitting)

%RE = percentage of datasets with correct ranef structure

%S = percentage of datasets where non-hierarchical shrinkage occurred

\overline{n}	m	CREPE			M-ALASSO				ALASSO			
		FP	FN	%RE	FP	FN	%RE	%S	FP	FN	%RE	%S
30		0.65		54	1.45		1		1.86	5.31	2	85
$(p_f = 17)$	20	0.31	0.01	94	0.98	0.16	2	2	1.04	4.13	8	62
60	10	0.46	0	64	1.05	0.05	0	11	0.25	Q 19	1	70
											1 11	66
$(p_f = 17)$ 60 $(p_f = 20)$	20	0.03 0.31 0.46 0.12	0.01		0.98		2	25 2 11 13		4.138.12		6 7

$$egin{pmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

Thanks that was delicious!

- → For longitudinal GLMMs, CREPE builds in the hierarchical structure that covariates should end up as either fixed or composite effects.
- → Outperform the limited stuff that is currently out there

Thanks to everyone for listening ©

