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Introduction – Survival models

𝒉 𝒕 = 𝒉𝟎 𝒕 . 𝐞𝐱𝐩(𝑿𝑻𝜷)Proportional Hazards model

• Proposed by Cox (1972)
• Covariates act multiplicatively on some unknown baseline hazard rate

𝒉 𝒕 = 𝒉𝟎 𝒕 + (𝑿 𝒕 )𝑻𝜷(𝒕)Additive Hazards model

• Proposed by Aalen (1989)

• Covariates act additively on some unknown baseline hazard rate

• 𝜷 𝒕 is depend on time 𝒕

𝒉 𝒕 = 𝒉𝟎 𝒕 + (𝑿(𝒕))𝑻𝜷Additive Hazards model – Special case

• Proposed by Lin & Ying (1994)
• Coefficient 𝜷 is constant

• Lin and Ying considered this model with the baseline 𝒉𝟎(𝒕) be any nonnegative function



Introduction – Types of censoring

• Left censoring; 𝒕𝒊 = 𝐦𝐚𝐱(𝑻𝒊, 𝑪𝒊) - event of interest has already occured before the study 

starts

• Interval censoring; 𝒕𝒊 ∈ (𝑳𝒊, 𝑹𝒊) - exact event time is unknown, but interval bounding is 

known

• Right censoring; 𝒕𝒊 = 𝐦𝐢𝐧(𝑻𝒊, 𝑪𝒊) - study ends before the event has occured 

• Fully observed; 𝒕𝒊 = 𝑻𝒊 - events occured within study period 

𝑡𝑠𝑡𝑎𝑟𝑡 𝑡𝑒𝑛𝑑

𝑇𝑖- failure time

𝐶𝑖- censoring time



Introduction – Research problem

 Interested on parameter estimation of the additive hazard model:

𝒉𝒊 𝒕, 𝑿𝒊 = 𝒉𝟎 𝒕 + 𝑿𝒊𝜷

 For this model the two non-negativity constraints as follows :
 Constraint 1 : 𝒉𝟎 𝒕 ≥ 𝟎

 Constraint 2 : 𝒉𝟎 𝒕 + 𝑿𝒊𝜷 ≥ 𝟎



Introduction – Research problem

 Main focus: Estimating the regression coefficients, 𝜷 and the baseline
hazard ,𝒉𝟎 𝒕 alternately by considering the two constraints

 Aalen (1980) 

 Used least square approach to estimate cumulative estimates

 Without considering constraints

 Ghosh (2001) & Zeng et al.(2006) 

 Used maximum likelihood approach to estimate 𝛽 and 𝐻0(𝑡)/ 𝑆0(𝑡) = exp(𝐻0 𝑡

 Imposed constraints on  𝐻0(𝑡) and 𝐻(𝑡)

 Farrington (1996) 

 Used GLM approach to estimate 𝛽 and ℎ0(𝑡)

 Non-negativity of ℎ0(𝑡) cannot be guaranteed



Methodology

 Used Maximum Penalized Likelihood (MPL) approach

 To estimate ℎ0(𝑡) by considering the full likelihood

 To smooth baseline hazard, a penalty function, 𝑱 𝒉𝟎 can be added on 𝒉𝟎 𝒕

 Then, maximum penalized likelihood objective function with respect to 𝒉𝟎 𝒕
and 𝜷,

 ℎ0 𝑡 ,  𝛽 = 𝑎𝑟𝑔𝑚𝑎𝑥 { 𝜱 ℎ0 𝑡 , 𝛽 = 𝑙 ℎ0 𝑡 , 𝛽 − 𝜆. 𝑱 ℎ0 𝑡 }

here 𝝀 is the smoothing parameter



Methodology continued…

 General form of Additive hazard model for observation 𝒊 :
𝒉𝒊 𝒕𝒊, 𝑿𝒊 = 𝒉𝟎 𝒕𝒊 + 𝑿𝒊𝜷

 Constraint 1 : 𝒉𝟎 𝒕𝒊 ≥ 𝟎

 ℎ0 𝑡𝑖 =  𝑢=1
𝑚 𝜃𝑢𝜓𝑢(𝑡𝑖)

 Select a basis function such that 𝜓𝑢 𝑡𝑖 ≥ 0 for all 𝑢

 𝑖. 𝑒 need to restrict 𝜽𝒖 ≥ 𝟎 to enforce ℎ0 𝑡𝑖 ≥ 0

 Constraint 2 : 𝒉𝟎 𝒕𝒊 + 𝑿𝒊𝜷 ≥ 𝟎

 𝑋𝑖𝛽 ≥ − ℎ0(𝑡𝑖)

 Possible to re-write above constraint in a simplified form as follows

𝑿𝒊𝜷 ≥ −𝜽𝒖 ; 𝒕𝒊 ∈ 𝑩𝒖



Methodology continued…

 Used Augmented Lagrangian (AL) method to treat constraints

 Let 𝜂𝑖 = 𝑋𝑖𝛽 to transfer the part of the constraints to 𝜼𝒊

 Augmented Lagrangian with respect to 𝜽, 𝜷, 𝜼 and 𝜸,

 𝜃 ,  𝛽,  η,  γ = 𝑎𝑟𝑔𝑚𝑎𝑥𝜃,𝛽,𝜂,𝛾 ℒ𝛼 𝜃, 𝛽, 𝜂, 𝛾

where ℒ𝛼 𝜃, 𝛽, 𝜂, 𝛾 = 𝑙 𝜃, 𝛽 − 𝜆. 𝐽 𝜃 −  𝑖=1
𝑛 𝛾𝑖(𝑋𝑖

𝑇𝛽 − 𝜂𝑖) −
𝛼

2
 𝑖=1

𝑛 (𝑋𝑖
𝑇𝛽 − 𝜂𝑖)

2

 These four parameters are updated alternately in each iteration. 



Methodology – Alternately updates

 Iteration (𝒌 + 𝟏) consists of following steps:

 STEP 1:With 𝜼 (𝒌), 𝜷(𝒌)and 𝜸(𝒌) obtained 𝜽(𝒌+𝟏);

 by running one iteration of the Multiplicative Iterative (MI) algorithm (Ma et al.

(2014)

 followed by a line search

 this guarantees that each updated 𝜽 value respects the non-negativity constraint

𝜃(𝑘+1) = 𝑎𝑟𝑔𝑚𝑎𝑥𝜃 ℒ𝛼 𝜃, 𝛽(𝑘), 𝜂(𝑘), 𝛾(𝑘) ; 𝜽 ≥ 𝟎 for all 𝒖



Methodology – Alternately updates

 STEP 2: With 𝜽(𝒌+𝟏), 𝜷(𝒌), 𝜸(𝒌) computed 𝜼(𝒌+𝟏);

 by running one iteration of the MI algorithm

 followed by a line search

 this step is standard and ensures that ℒ𝛼 𝜃(𝑘+1), 𝛽(𝑘), 𝜂, 𝛾(𝑘) increases as a

function of 𝜼

𝜂(𝑘+1) = 𝑎𝑟𝑔𝑚𝑎𝑥𝜂 ℒ𝛼 𝜃(𝑘+1), 𝛽(𝑘), 𝜂, 𝛾(𝑘) ; 𝜼𝒊 ≥ −𝜽𝒖 ; 𝒕𝒊 ∈ 𝑩𝒖



Methodology – Alternately updates

 STEP 3: With 𝜽(𝒌+𝟏), 𝜼(𝒌+𝟏)and 𝜸(𝒌) computed 𝜷(𝒌+𝟏);

 by running one iteration of the Newton algorithm

 use Armijo’s rule to perform line search

𝛽(𝑘+1) = 𝑎𝑟𝑔𝑚𝑎𝑥𝛽 ℒ𝛼 𝜃(𝑘+1), 𝛽, 𝜂(𝑘+1), 𝛾(𝑘)

𝛽(𝑘+1) = 𝛽(𝑘) − 𝜔 𝑘 .
𝜕2ℒ𝛼

𝜕𝛽𝑗𝜕𝛽𝑘

−1
𝜕ℒ𝛼

𝜕𝛽𝑗

 STEP 4: With 𝜽(𝒌+𝟏), 𝜼(𝒌+𝟏)and 𝜷(𝒌+𝟏) updated 𝜸(𝒌+𝟏) as follows;

𝛾(𝑘+1) = 𝛾(𝑘) + 𝛼. (𝑋𝑇𝛽(𝑘+1) − 𝜂(𝑘+1))



Examples

 In the examples, the main aims are to 

 demonstrate this method of estimating 𝜷 and 𝒉𝟎 𝒕 works well

 study the behavior of the results under different censoring proportions and
number of events

 compare the results with the existing methods

 Indicator function is used as the basis function in 𝒉𝟎(𝒕) estimation

 Arbitrary selected smoothing parameter, 𝝀 (= 𝟎. 𝟎𝟓) value is used

 Simulate survival times (𝑡) from Weibull distribution with hazard;

𝒉𝒊 𝒕 = 𝟑𝒕𝟐 + (𝒙𝐢𝟏 + 𝟎. 𝟔𝒙𝐢𝟐 − 𝟎. 𝟖𝒙𝐢𝟑)



Results – Regression coefficient estimation

 Considered 𝑛 = 100 & 𝑛 = 1000 with approximate censoring proportions; 𝜋𝑐 of

20%, 50% and 80% for each value of 𝑛

 Compared results (MPL) with two existing estimation procedures;

i. Aalen’s additive hazard models – using “aareg” function of Survival R package

ii. Lin & Ying’s additive hazards model – using “ahaz” function of Ahaz R package



Results : study ONE – Right censored data
MSE comparison

Aalen’s method poorly performed with higher censoring proportions

MPL method performs slightly better than Lin & Ying’s method  



Results : study TWO – Interval censored data 
MSE comparison

Aalen’s method poorly performed with interval censored data

Lin & Ying’s method  not stable with higher censoring proportions



Results : study TWO – Interval censored data 
Bias & Variance comparison

Bias and variance increases with the censoring proportion, but decreases with the 

sample size



Results - Baseline hazard estimation
(Interval censored data)

𝑛 = 1000, 𝜆 = 0.05 and 𝑝 = 0.2 𝑛 = 1000, 𝜆 = 0.05 and 𝑝 = 0.8



Conclusion

 MPL produces better results than Aalen’s method (Right & Interval cens)

 MPL produces slightly better results than Lin & Ying’s method (Right cens) & 
Lin & Ying’s methods produces roughly same results as MPL for lower 
censoring proportions, but under performed for higher censoring proportions 
(Interval cens)

 MPL produces estimates that are less biased than other methods, leading to a 
substantial MSE reduction

 Overall, MPL provides a gain in efficiency over Aalen’s and Lin & Ying’s 
method 

 Baseline hazard estimation performs well even with the random 𝝀 value, could 
be improved by selecting an optimal smoothing parameter



Future work

 Extend the algorithm for different basis functions, including spline function

 Implement a procedure to obtain the optimal smoothing parameter 𝝀

 Develop asymptotic properties of the estimates of 𝜽 and 𝜷
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Literature Review

 Here we review three approaches on fitting the Additive hazards model 

 Least squares approach

 Aalen (1980) used formal least squares principle for nonparametric additive hazard 
model

 Firstly obtained cumulative versions of the estimates using continuous data

 Then, the coefficients can be estimated from the slope of the cumulative estimates

 Leads to well-known Nelson-Aalen estimate for cumulative hazard estimation

*Could not extend this model for interval censored data



Literature Review

 Maximum Likelihood (ML) approach
 Ghosh (2001) and Zeng et al.(2006) developed ML approach for additive hazards 

model.

 Ghosh fits the additive hazards model by estimating 𝛽 and a cumulative baseline 
hazard function 𝐻0(. )

 Used primal-dual interior point algorithm

 Algorithm imposes contraints of positivity & monotonic increasing on 𝐻0(. ) and the 
cumulative hazard 𝐻𝑖(. )

 Zeng et al. fit the additive hazards model with interval censored data

 Using the log likelihood function which is expressed in terms of 𝑆0(. ) and 𝛽

 This constraints positivity and monotonic decreasing on 𝑆0(. ) by using a logarithm 
transformation

* Here the way the constraints are imposed can make the estimation procedure unstable 
when the baseline survival estimate approaches zero.



Literature Review

 Generalized Linear Model (GLM) approach

 Farrington (1996) fits the additive hazards model for interval censored data using a 
generalized linear model (GLM) approach

 The occurrences left, right and interval censored observations are assumed to be from 
indepedent Bernoulli trials

 Occurrence probability is related to a linear predictor by a negative log link function

 Then 𝛽 and ℎ0(. ) can be estimated by fitting the generalized linear model

 The baseline hazard ℎ0(. ) is assumed to be piecewise constant over some intervals

*Neither non-negativity nor smoothness of the ℎ0(. ) can be guaranteed



Simulation results : study ONE – Right censored data
MSE comparison



Simulation results : study TWO – Interval censored data 
MSE comparison



Simulation results : study TWO – Interval censored data 
Bias & Variance comparison



Simulation results : study TWO – Interval censored data 
Bias & Variance comparison


