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Introduction – Survival models

𝒉 𝒕 = 𝒉𝟎 𝒕 . 𝐞𝐱𝐩(𝑿𝑻𝜷)Proportional Hazards model

• Proposed by Cox (1972)
• Covariates act multiplicatively on some unknown baseline hazard rate

𝒉 𝒕 = 𝒉𝟎 𝒕 + (𝑿 𝒕 )𝑻𝜷(𝒕)Additive Hazards model

• Proposed by Aalen (1989)

• Covariates act additively on some unknown baseline hazard rate

• 𝜷 𝒕 is depend on time 𝒕

𝒉 𝒕 = 𝒉𝟎 𝒕 + (𝑿(𝒕))𝑻𝜷Additive Hazards model – Special case

• Proposed by Lin & Ying (1994)
• Coefficient 𝜷 is constant

• Lin and Ying considered this model with the baseline 𝒉𝟎(𝒕) be any nonnegative function



Introduction – Types of censoring

• Left censoring; 𝒕𝒊 = 𝐦𝐚𝐱(𝑻𝒊, 𝑪𝒊) - event of interest has already occured before the study 

starts

• Interval censoring; 𝒕𝒊 ∈ (𝑳𝒊, 𝑹𝒊) - exact event time is unknown, but interval bounding is 

known

• Right censoring; 𝒕𝒊 = 𝐦𝐢𝐧(𝑻𝒊, 𝑪𝒊) - study ends before the event has occured 

• Fully observed; 𝒕𝒊 = 𝑻𝒊 - events occured within study period 

𝑡𝑠𝑡𝑎𝑟𝑡 𝑡𝑒𝑛𝑑

𝑇𝑖- failure time

𝐶𝑖- censoring time



Introduction – Research problem

 Interested on parameter estimation of the additive hazard model:

𝒉𝒊 𝒕, 𝑿𝒊 = 𝒉𝟎 𝒕 + 𝑿𝒊𝜷

 For this model the two non-negativity constraints as follows :
 Constraint 1 : 𝒉𝟎 𝒕 ≥ 𝟎

 Constraint 2 : 𝒉𝟎 𝒕 + 𝑿𝒊𝜷 ≥ 𝟎



Introduction – Research problem

 Main focus: Estimating the regression coefficients, 𝜷 and the baseline
hazard ,𝒉𝟎 𝒕 alternately by considering the two constraints

 Aalen (1980) 

 Used least square approach to estimate cumulative estimates

 Without considering constraints

 Ghosh (2001) & Zeng et al.(2006) 

 Used maximum likelihood approach to estimate 𝛽 and 𝐻0(𝑡)/ 𝑆0(𝑡) = exp(𝐻0 𝑡

 Imposed constraints on  𝐻0(𝑡) and 𝐻(𝑡)

 Farrington (1996) 

 Used GLM approach to estimate 𝛽 and ℎ0(𝑡)

 Non-negativity of ℎ0(𝑡) cannot be guaranteed



Methodology

 Used Maximum Penalized Likelihood (MPL) approach

 To estimate ℎ0(𝑡) by considering the full likelihood

 To smooth baseline hazard, a penalty function, 𝑱 𝒉𝟎 can be added on 𝒉𝟎 𝒕

 Then, maximum penalized likelihood objective function with respect to 𝒉𝟎 𝒕
and 𝜷,

 ℎ0 𝑡 ,  𝛽 = 𝑎𝑟𝑔𝑚𝑎𝑥 { 𝜱 ℎ0 𝑡 , 𝛽 = 𝑙 ℎ0 𝑡 , 𝛽 − 𝜆. 𝑱 ℎ0 𝑡 }

here 𝝀 is the smoothing parameter



Methodology continued…

 General form of Additive hazard model for observation 𝒊 :
𝒉𝒊 𝒕𝒊, 𝑿𝒊 = 𝒉𝟎 𝒕𝒊 + 𝑿𝒊𝜷

 Constraint 1 : 𝒉𝟎 𝒕𝒊 ≥ 𝟎

 ℎ0 𝑡𝑖 =  𝑢=1
𝑚 𝜃𝑢𝜓𝑢(𝑡𝑖)

 Select a basis function such that 𝜓𝑢 𝑡𝑖 ≥ 0 for all 𝑢

 𝑖. 𝑒 need to restrict 𝜽𝒖 ≥ 𝟎 to enforce ℎ0 𝑡𝑖 ≥ 0

 Constraint 2 : 𝒉𝟎 𝒕𝒊 + 𝑿𝒊𝜷 ≥ 𝟎

 𝑋𝑖𝛽 ≥ − ℎ0(𝑡𝑖)

 Possible to re-write above constraint in a simplified form as follows

𝑿𝒊𝜷 ≥ −𝜽𝒖 ; 𝒕𝒊 ∈ 𝑩𝒖



Methodology continued…

 Used Augmented Lagrangian (AL) method to treat constraints

 Let 𝜂𝑖 = 𝑋𝑖𝛽 to transfer the part of the constraints to 𝜼𝒊

 Augmented Lagrangian with respect to 𝜽, 𝜷, 𝜼 and 𝜸,

 𝜃 ,  𝛽,  η,  γ = 𝑎𝑟𝑔𝑚𝑎𝑥𝜃,𝛽,𝜂,𝛾 ℒ𝛼 𝜃, 𝛽, 𝜂, 𝛾

where ℒ𝛼 𝜃, 𝛽, 𝜂, 𝛾 = 𝑙 𝜃, 𝛽 − 𝜆. 𝐽 𝜃 −  𝑖=1
𝑛 𝛾𝑖(𝑋𝑖

𝑇𝛽 − 𝜂𝑖) −
𝛼

2
 𝑖=1

𝑛 (𝑋𝑖
𝑇𝛽 − 𝜂𝑖)

2

 These four parameters are updated alternately in each iteration. 



Methodology – Alternately updates

 Iteration (𝒌 + 𝟏) consists of following steps:

 STEP 1:With 𝜼 (𝒌), 𝜷(𝒌)and 𝜸(𝒌) obtained 𝜽(𝒌+𝟏);

 by running one iteration of the Multiplicative Iterative (MI) algorithm (Ma et al.

(2014)

 followed by a line search

 this guarantees that each updated 𝜽 value respects the non-negativity constraint

𝜃(𝑘+1) = 𝑎𝑟𝑔𝑚𝑎𝑥𝜃 ℒ𝛼 𝜃, 𝛽(𝑘), 𝜂(𝑘), 𝛾(𝑘) ; 𝜽 ≥ 𝟎 for all 𝒖



Methodology – Alternately updates

 STEP 2: With 𝜽(𝒌+𝟏), 𝜷(𝒌), 𝜸(𝒌) computed 𝜼(𝒌+𝟏);

 by running one iteration of the MI algorithm

 followed by a line search

 this step is standard and ensures that ℒ𝛼 𝜃(𝑘+1), 𝛽(𝑘), 𝜂, 𝛾(𝑘) increases as a

function of 𝜼

𝜂(𝑘+1) = 𝑎𝑟𝑔𝑚𝑎𝑥𝜂 ℒ𝛼 𝜃(𝑘+1), 𝛽(𝑘), 𝜂, 𝛾(𝑘) ; 𝜼𝒊 ≥ −𝜽𝒖 ; 𝒕𝒊 ∈ 𝑩𝒖



Methodology – Alternately updates

 STEP 3: With 𝜽(𝒌+𝟏), 𝜼(𝒌+𝟏)and 𝜸(𝒌) computed 𝜷(𝒌+𝟏);

 by running one iteration of the Newton algorithm

 use Armijo’s rule to perform line search

𝛽(𝑘+1) = 𝑎𝑟𝑔𝑚𝑎𝑥𝛽 ℒ𝛼 𝜃(𝑘+1), 𝛽, 𝜂(𝑘+1), 𝛾(𝑘)

𝛽(𝑘+1) = 𝛽(𝑘) − 𝜔 𝑘 .
𝜕2ℒ𝛼

𝜕𝛽𝑗𝜕𝛽𝑘

−1
𝜕ℒ𝛼

𝜕𝛽𝑗

 STEP 4: With 𝜽(𝒌+𝟏), 𝜼(𝒌+𝟏)and 𝜷(𝒌+𝟏) updated 𝜸(𝒌+𝟏) as follows;

𝛾(𝑘+1) = 𝛾(𝑘) + 𝛼. (𝑋𝑇𝛽(𝑘+1) − 𝜂(𝑘+1))



Examples

 In the examples, the main aims are to 

 demonstrate this method of estimating 𝜷 and 𝒉𝟎 𝒕 works well

 study the behavior of the results under different censoring proportions and
number of events

 compare the results with the existing methods

 Indicator function is used as the basis function in 𝒉𝟎(𝒕) estimation

 Arbitrary selected smoothing parameter, 𝝀 (= 𝟎. 𝟎𝟓) value is used

 Simulate survival times (𝑡) from Weibull distribution with hazard;

𝒉𝒊 𝒕 = 𝟑𝒕𝟐 + (𝒙𝐢𝟏 + 𝟎. 𝟔𝒙𝐢𝟐 − 𝟎. 𝟖𝒙𝐢𝟑)



Results – Regression coefficient estimation

 Considered 𝑛 = 100 & 𝑛 = 1000 with approximate censoring proportions; 𝜋𝑐 of

20%, 50% and 80% for each value of 𝑛

 Compared results (MPL) with two existing estimation procedures;

i. Aalen’s additive hazard models – using “aareg” function of Survival R package

ii. Lin & Ying’s additive hazards model – using “ahaz” function of Ahaz R package



Results : study ONE – Right censored data
MSE comparison

Aalen’s method poorly performed with higher censoring proportions

MPL method performs slightly better than Lin & Ying’s method  



Results : study TWO – Interval censored data 
MSE comparison

Aalen’s method poorly performed with interval censored data

Lin & Ying’s method  not stable with higher censoring proportions



Results : study TWO – Interval censored data 
Bias & Variance comparison

Bias and variance increases with the censoring proportion, but decreases with the 

sample size



Results - Baseline hazard estimation
(Interval censored data)

𝑛 = 1000, 𝜆 = 0.05 and 𝑝 = 0.2 𝑛 = 1000, 𝜆 = 0.05 and 𝑝 = 0.8



Conclusion

 MPL produces better results than Aalen’s method (Right & Interval cens)

 MPL produces slightly better results than Lin & Ying’s method (Right cens) & 
Lin & Ying’s methods produces roughly same results as MPL for lower 
censoring proportions, but under performed for higher censoring proportions 
(Interval cens)

 MPL produces estimates that are less biased than other methods, leading to a 
substantial MSE reduction

 Overall, MPL provides a gain in efficiency over Aalen’s and Lin & Ying’s 
method 

 Baseline hazard estimation performs well even with the random 𝝀 value, could 
be improved by selecting an optimal smoothing parameter



Future work

 Extend the algorithm for different basis functions, including spline function

 Implement a procedure to obtain the optimal smoothing parameter 𝝀

 Develop asymptotic properties of the estimates of 𝜽 and 𝜷
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Literature Review

 Here we review three approaches on fitting the Additive hazards model 

 Least squares approach

 Aalen (1980) used formal least squares principle for nonparametric additive hazard 
model

 Firstly obtained cumulative versions of the estimates using continuous data

 Then, the coefficients can be estimated from the slope of the cumulative estimates

 Leads to well-known Nelson-Aalen estimate for cumulative hazard estimation

*Could not extend this model for interval censored data



Literature Review

 Maximum Likelihood (ML) approach
 Ghosh (2001) and Zeng et al.(2006) developed ML approach for additive hazards 

model.

 Ghosh fits the additive hazards model by estimating 𝛽 and a cumulative baseline 
hazard function 𝐻0(. )

 Used primal-dual interior point algorithm

 Algorithm imposes contraints of positivity & monotonic increasing on 𝐻0(. ) and the 
cumulative hazard 𝐻𝑖(. )

 Zeng et al. fit the additive hazards model with interval censored data

 Using the log likelihood function which is expressed in terms of 𝑆0(. ) and 𝛽

 This constraints positivity and monotonic decreasing on 𝑆0(. ) by using a logarithm 
transformation

* Here the way the constraints are imposed can make the estimation procedure unstable 
when the baseline survival estimate approaches zero.



Literature Review

 Generalized Linear Model (GLM) approach

 Farrington (1996) fits the additive hazards model for interval censored data using a 
generalized linear model (GLM) approach

 The occurrences left, right and interval censored observations are assumed to be from 
indepedent Bernoulli trials

 Occurrence probability is related to a linear predictor by a negative log link function

 Then 𝛽 and ℎ0(. ) can be estimated by fitting the generalized linear model

 The baseline hazard ℎ0(. ) is assumed to be piecewise constant over some intervals

*Neither non-negativity nor smoothness of the ℎ0(. ) can be guaranteed



Simulation results : study ONE – Right censored data
MSE comparison



Simulation results : study TWO – Interval censored data 
MSE comparison



Simulation results : study TWO – Interval censored data 
Bias & Variance comparison



Simulation results : study TWO – Interval censored data 
Bias & Variance comparison


