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Introduction — Survival models

h(t) = ho(t).exp(XTB)

* Proposed by Cox (1972)
» Covariates act multiplicatively on some unknown baseline hazard rate

( Additive Hazards model h(t) = ho(t) + (X))

* Proposed by Aalen (1989)
« Covariates act additively on some unknown baseline hazard rate
* B(t)is depend ontime t

(Additive Hazards model — Special case.  h(t) = hy(t) + (X())TB

* Proposed by Lin & Ying (1994)
« Coefficient g is constant
* Lin and Ying considered this model with the baseline hy(t) be any nonnegative function
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Introduction — Types of censoring
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« Left censoring; t; = max(T;, C;) - event of interest has already occured before the study
starts

 Interval censoring; t; € (L;, R;) - exact event time is unknown, but interval bounding is
known

« Right censoring; t; = min(T;, C;) - study ends before the event has occured

* Fully observed; t; = T; - events occured within study period
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Introduction — Research problem

* Interested on parameter estimation of the additive hazard model:
h;(t,X;) = ho(t) + X;B

» For this model the two non-negativity constraints as follows :
= Constraint 1: ho(t) =0

= Constraint 2 : ho(t) + X;8 =0
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Introduction — Research problem

= Main focus: Estimating the regression coefficients, g and the baseline
hazard ,hy(t) alternately by considering the two constraints

= Aalen (1980)
» Used least square approach to estimate cumulative estimates
= Without considering constraints

» Ghosh (2001) & Zeng et al.(2006)
= Used maximum likelihood approach to estimate g and Hy(t)! Sy(t) {= exp(Hy(t)}
= |mposed constraints on H,(t) and H(t)

= Farrington (1996)
= Used GLM approach to estimate f and h,(t)
= Non-negativity of hy(t) cannot be guaranteed
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Methodology

» Used Maximum Penalized Likelihood (MPL) approach
» To estimate h,(t) by considering the full likelihood
= To smooth baseline hazard, a penalty function, J(hy) can be added on hy(t)

= Then, maximum penalized likelihood objective function with respect to hy(t)
and S,

(ho(8) ,B) = argmax { @ (ho(t), B) = L (ho(t), B) — 2] (ho(1) )}

here A is the smoothing parameter
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Methodology continued...

= General form of Additive hazard model for observation i :
h;(t; X;) = ho(t;) + X;B

= Constraint 1 : hy(t;) =0
" ho(t) = 2u=1 Ouhu(ty)
= Select a basis function such that ¥, (t;) = 0 for all u
= {.e need to restrict 8,, = 0 to enforce hy(t;) =0

= Constraint 2 : hy(t;) + X;# =0
" Xif = — ho(t)
» Possible to re-write above constraint in a simplified form as follows
Xiﬁ = _Bu , L; € Bu
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Methodology continued...

» Used Augmented Lagrangian (AL) method to treat constraints
* Let n; = X;[ to transfer the part of the constraints to n;

= Augmented Lagrangian with respect to 6, 8, and vy,

—~~

(é B, 0, Y’) = argmaxg g n,y {L,(0,8,1,7)}
where L, (6, 8,1,7) ={L1(6,8) = 1]} — XL1vi(X{ B —mi) — %Z?:KXLT,B — 1)’

* These four parameters are updated alternately in each iteration.
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Methodology — Alternately updates

= |teration (k + 1) consists of following steps:

= STEP 1:With n ®, g and y® obtained §%+V);

= by running one iteration of the Multiplicative Iterative (MI) algorithm (Ma et al.
(2014)

= followed by a line search
= this guarantees that each updated @ value respects the non-negativity constraint

0+ = argmaxg L,(0,39,7®,y) 0 > o0forallu
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Methodology — Alternately updates

= STEP 2: With 8%+ g () computed nk+1D);

* by running one iteration of the Ml algorithm

= followed by a line search

= this step is standard and ensures that L, (0%+D,p®) 5 1)) increases as a
function of n

nk+D) = argmax,, La(H(k“),,B(k),n,)/(k)) 'n; =—0,; t; €By,
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Methodology — Alternately updates

= STEP 3: With 8%+ nk+Dand y® computed g+,
* by running one iteration of the Newton algorithm
= use Armijo’s rule to perform line search

BUD = argmaxy Lo (0%+D, B, kD, ()

BUHD) — (R _ () [ 0%La ] [f’ﬁ]
AR

= STEP 4: With %+D »nk+Dapnd g+ ypdated y*+D as follows;
y+D) — (0 4 g (XTRKHD _ p(k+1)y
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Examples

* In the examples, the main aims are to
= demonstrate this method of estimating # and hy(t) works well

= study the behavior of the results under different censoring proportions and
number of events

= compare the results with the existing methods
= Indicator function is used as the basis function in hy(t) estimation
= Arbitrary selected smoothing parameter, 4 (= 0.05) value Is used

= Simulate survival times (t) from Weibull distribution with hazard;
hi(t) = 3t? + (xil + 0.6x;, — 0. 8xi3)
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Results — Regression coefficient estimation

= Considered n = 100 & n = 1000 with approximate censoring proportions; m, of
20%, 50% and 80% for each value of n

= Compared results (MPL) with two existing estimation procedures;
I.  Aalen’s additive hazard models — using “aareg” function of Survival R package

li. Lin & Ying's additive hazards model — using “ahaz” function of Ahaz R package



Results : study ONE — Right censored data
MSE comparison
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Results : study TWO - Interval censored data
MSE comparison
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Results : study TWO - Interval censored data
Bias & Variance comparison
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Bias comparison for B1 Variance comparison for 1
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(Interval censored data)

True hazard vs Estimated hazard True hazard vs Estimated hazard

baseline hazard function
baseline hazard function

time.point time point

n =1000,4 = 0.05and p = 0.2 n = 1000,4A=0.05and p = 0.8
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Conclusion

= MPL produces better results than Aalen’s method (Right & Interval cens)

= MPL produces slightly better results than Lin & Ying’'s method (Right cens) &
Lin & Ying's methods produces roughly same results as MPL for lower
censoring proportions, but under performed for higher censoring proportions
(Interval cens)

= MPL produces estimates that are less biased than other methods, leading to a
substantial MSE reduction

= QOverall, MPL provides a gain in efficiency over Aalen’s and Lin & Ying's
method

= Baseline hazard estimation performs well even with the random A value, could
be improved by selecting an optimal smoothing parameter
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Future work

= Extend the algorithm for different basis functions, including spline function
* Implement a procedure to obtain the optimal smoothing parameter A

= Develop asymptotic properties of the estimates of @ and 8
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Literature Review

= Here we review three approaches on fitting the Additive hazards model

= | east squares approach

= Aalen (1980) used formal least squares principle for nonparametric additive hazard
model

= Firstly obtained cumulative versions of the estimates using continuous data
= Then, the coefficients can be estimated from the slope of the cumulative estimates
» Leads to well-known Nelson-Aalen estimate for cumulative hazard estimation

*Could not extend this model for interval censored data



“ MACQUARIE
3% University

Literature Review

= Maximum Likelihood (ML) approach
= Ghosh (2001) and Zeng et al.(2006) developed ML approach for additive hazards
model.

= Ghosh fits the additive hazards model by estimating f and a cumulative baseline
hazard function Hy(.)

= Used primal-dual interior point algorithm

= Algorithm imposes contraints of positivity & monotonic increasing on H,(.) and the
cumulative hazard H;(.)

= Zeng et al. fit the additive hazards model with interval censored data
= Using the log likelihood function which is expressed in terms of Sy(.) and

= This constraints positivity and monotonic decreasing on S,(.) by using a logarithm
transformation

* Here the way the constraints are imposed can make the estimation procedure unstable
when the baseline survival estimate approaches zero.
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Literature Review

» Generalized Linear Model (GLM) approach
= Farrington (1996) fits the additive hazards model for interval censored data using a
generalized linear model (GLM) approach

= The occurrences left, right and interval censored observations are assumed to be from
indepedent Bernoulli trials

= QOccurrence probability is related to a linear predictor by a negative log link function
= Then g and hy(.) can be estimated by fitting the generalized linear model
= The baseline hazard hy(.) is assumed to be piecewise constant over some intervals

*Neither non-negativity nor smoothness of the h,(.) can be guaranteed



Simulation results : study ONE — Right censored data

MSE comparison
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Simulation results : study TWO

MSE comparison

— Interval censored data
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Simulation results : study TWO - Interval censored data

Bias & Variance comparison
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Simulation results : study TWO - Interval censored data

Bias & Variance comparison
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