PENALIZED LIKELIHOOD PARAMETER ESTIMATION FOR ADDITIVE HAZARD MODELS WITH INTERVAL CENSORED DATA

Kasun Rathnayake ; A/Prof Jun Ma

Department of Statistics Faculty of Science and Engineering Macquarie University

Outline

- Introduction
 - Survival models
 - Types of censoring
 - Research problem
- Methodology
- Examples
- Conclusion/ Discussion
- References

Introduction – Survival models

Proportional Hazards model

$$h(t) = h_0(t) \cdot \exp(X^T \beta)$$

- Proposed by Cox (1972)
- Covariates act multiplicatively on some unknown baseline hazard rate

Additive Hazards model

$$h(t) = h_0(t) + (X(t))^T \beta(t)$$

- Proposed by Aalen (1989)
- · Covariates act additively on some unknown baseline hazard rate
- $\beta(t)$ is depend on time t

Additive Hazards model – Special case $h(t) = h_0(t) + (X(t))^T \beta$

- Proposed by Lin & Ying (1994)
- Coefficient β is constant
- Lin and Ying considered this model with the baseline $h_0(t)$ be any nonnegative function

Introduction – Types of censoring

- Left censoring; $t_i = \max(T_i, C_i)$ event of interest has already occured before the study starts
- Interval censoring; t_i ∈ (L_i, R_i) exact event time is unknown, but interval bounding is known
- Right censoring; $t_i = \min(T_i, C_i)$ study ends before the event has occured
- Fully observed; $t_i = T_i$ events occured within study period

Interested on parameter estimation of the additive hazard model:

 $h_i(t, X_i) = h_0(t) + X_i \beta$

- For this model the two non-negativity constraints as follows : • Constraint 1 : $h_0(t) \ge 0$
 - Constraint 2 : $h_0(t) + X_i \beta \ge 0$

- Main focus: Estimating the regression coefficients, β and the baseline hazard , $h_0(t)$ <u>alternately</u> by considering the two constraints
 - Aalen (1980)
 - Used least square approach to estimate cumulative estimates
 - Without considering constraints
 - Ghosh (2001) & Zeng et al.(2006)
 - Used maximum likelihood approach to estimate β and $H_0(t)/S_0(t) \{= \exp(H_0(t))\}$
 - Imposed constraints on $H_0(t)$ and H(t)
 - Farrington (1996)
 - Used GLM approach to estimate β and $h_0(t)$
 - Non-negativity of $h_0(t)$ cannot be guaranteed

- Used Maximum Penalized Likelihood (MPL) approach
 - To estimate $h_0(t)$ by considering the full likelihood
 - To smooth baseline hazard, a penalty function, $J(h_0)$ can be added on $h_0(t)$
- Then, maximum penalized likelihood objective function with respect to $h_0(t)$ and β ,

 $\left(\widehat{h_0(t)},\widehat{\beta}\right) = \operatorname{argmax}\left\{\boldsymbol{\Phi}\left(h_0(t),\beta\right) = l\left(h_0(t),\beta\right) - \lambda \boldsymbol{J}\left(h_0(t)\right)\right\}$

here λ is the smoothing parameter

Methodology continued...

- General form of Additive hazard model for observation i: $h_i(t_i, X_i) = h_0(t_i) + X_i \beta$
- Constraint 1 : $h_0(t_i) \ge 0$
 - $h_0(t_i) = \sum_{u=1}^m \theta_u \psi_u(t_i)$
 - Select a basis function such that $\psi_u(t_i) \ge 0$ for all u
 - *i.e* need to restrict $\theta_u \ge 0$ to enforce $h_0(t_i) \ge 0$
- Constraint 2 : $h_0(t_i) + X_i \beta \ge 0$
 - $X_i\beta \ge -h_0(t_i)$
 - Possible to re-write above constraint in a simplified form as follows
 - $X_i \beta \geq -\theta_u ; t_i \in B_u$

- Used Augmented Lagrangian (AL) method to treat constraints
- Let $\eta_i = X_i \beta$ to transfer the part of the constraints to η_i
- Augmented Lagrangian with respect to θ , β , η and γ ,

 $(\hat{\theta}, \hat{\beta}, \hat{\eta}, \hat{\gamma}) = argmax_{\theta, \beta, \eta, \gamma} \{ \mathcal{L}_{\alpha}(\theta, \beta, \eta, \gamma) \}$

where $\mathcal{L}_{\alpha}(\theta, \beta, \eta, \gamma) = \{l(\theta, \beta) - \lambda J(\theta)\} - \sum_{i=1}^{n} \gamma_i (X_i^T \beta - \eta_i) - \frac{\alpha}{2} \sum_{i=1}^{n} (X_i^T \beta - \eta_i)^2 \}$

• These four parameters are updated <u>alternately</u> in each iteration.

- Iteration (k + 1) consists of following steps:
- STEP 1: With $\eta^{(k)}$, $\beta^{(k)}$ and $\gamma^{(k)}$ obtained $\theta^{(k+1)}$;
 - by running one iteration of the Multiplicative Iterative (MI) algorithm (Ma et al. (2014)
 - followed by a line search
 - this guarantees that each updated θ value respects the non-negativity constraint

 $\theta^{(k+1)} = \operatorname{argmax}_{\theta} \mathcal{L}_{\alpha}(\theta, \beta^{(k)}, \eta^{(k)}, \gamma^{(k)}) \quad ; \theta \geq 0 \text{ for all } u$

• STEP 2: With $\theta^{(k+1)}$, $\beta^{(k)}$, $\gamma^{(k)}$ computed $\eta^{(k+1)}$;

- by running one iteration of the MI algorithm
- followed by a line search
- this step is standard and ensures that $\mathcal{L}_{\alpha}(\theta^{(k+1)}, \beta^{(k)}, \eta, \gamma^{(k)})$ increases as a function of η

 $\eta^{(k+1)} = \operatorname{argmax}_{\eta} \mathcal{L}_{\alpha} \left(\theta^{(k+1)}, \beta^{(k)}, \eta, \gamma^{(k)} \right) \quad ; \boldsymbol{\eta}_{i} \geq -\boldsymbol{\theta}_{u} \; ; \; \boldsymbol{t}_{i} \in \boldsymbol{B}_{u}$

- STEP 3: With $\theta^{(k+1)}$, $\eta^{(k+1)}$ and $\gamma^{(k)}$ computed $\beta^{(k+1)}$;
 - by running one iteration of the Newton algorithm
 - use Armijo's rule to perform line search

 $\beta^{(k+1)} = \operatorname{argmax}_{\beta} \mathcal{L}_{\alpha} \left(\theta^{(k+1)}, \beta, \eta^{(k+1)}, \gamma^{(k)} \right)$

$$\beta^{(k+1)} = \beta^{(k)} - \omega^{(k)} \cdot \left[\frac{\partial^2 \mathcal{L}_{\alpha}}{\partial \beta_j \partial \beta_k} \right]^{-1} \left[\frac{\partial \mathcal{L}_{\alpha}}{\partial \beta_j} \right]$$

• STEP 4: With $\theta^{(k+1)}$, $\eta^{(k+1)}$ and $\beta^{(k+1)}$ updated $\gamma^{(k+1)}$ as follows;

$$\gamma^{(k+1)} = \gamma^{(k)} + \alpha. (X^T \beta^{(k+1)} - \eta^{(k+1)})$$

- In the examples, the main aims are to
 - demonstrate this method of estimating β and $h_0(t)$ works well
 - study the behavior of the results under different censoring proportions and number of events
 - compare the results with the existing methods
- Indicator function is used as the basis function in $h_0(t)$ estimation
- Arbitrary selected smoothing parameter, λ (= 0.05) value is used
- Simulate survival times (t) from Weibull distribution with hazard; $h_i(t) = 3t^2 + (x_{i1} + 0.6x_{i2} - 0.8x_{i3})$

- Considered n = 100 & n = 1000 with approximate censoring proportions; π_c of 20%, 50% and 80% for each value of n
- Compared results (MPL) with two existing estimation procedures;
 - i. Aalen's additive hazard models using "aareg" function of **Survival** R package
 - ii. Lin & Ying's additive hazards model using "ahaz" function of Ahaz R package

Results : study ONE – Right censored data MSE comparison

Aalen's method poorly performed with higher censoring proportions MPL method performs slightly better than Lin & Ying's method

Results : study TWO – Interval censored data MSE comparison

Aalen's method poorly performed with interval censored data Lin & Ying's method not stable with higher censoring proportions

Results : study TWO – Interval censored data Bias & Variance comparison

Bias and variance increases with the censoring proportion, but decreases with the sample size

Results - Baseline hazard estimation (Interval censored data)

- MPL produces better results than Aalen's method (Right & Interval cens)
- MPL produces slightly better results than Lin & Ying's method (Right cens) & Lin & Ying's methods produces roughly same results as MPL for lower censoring proportions, but under performed for higher censoring proportions (Interval cens)
- MPL produces estimates that are less biased than other methods, leading to a substantial MSE reduction
- Overall, MPL provides a gain in efficiency over Aalen's and Lin & Ying's method
- Baseline hazard estimation performs well even with the random λ value, could be improved by selecting an optimal smoothing parameter

- Extend the algorithm for different basis functions, including spline function
- Implement a procedure to obtain the optimal smoothing parameter λ
- Develop asymptotic properties of the estimates of θ and β

References

- Aalen, O.O. (1980), "A model for nonparametric regression analysis of counting processes", *Lecture notes in Statistics*, 2, Springer-Verlag, 1-25
- Cai, T. and Betensky, R.A. (2003), "Hazard regression for interval censored data with penalized spline", *Biometrics*, 59,570-579
- J. Ma, S. Heritier and S. Lo, (2014), "On the maximum penalized likelihood approach for proportional hazard models with right censored survival data", *Computational Statistics and Data Analysis*, vol 74, pp 142 - 156, 2014.
- Lin, D. Y. and Ying, Z. (1994), "Semiparametric analysis of the additive risk model", Biometrika, 81:61 – 71.
- Lin, D. Y. and Ying, Z. (2007), "Maximum likelihood estimation in semi-parametric regression models with censored data", J. Roy. Statist Soc.B, 69:507 – 564.
- Luenberger, D. (1984). *Linear and Nonlinear Programming (2nd edition)*. J. Wiley.
- McCullagh, P. and Nelder, J. A. (1989), Generalized linear models (2nd edition). Chapman and Hall, London.

THANK YOU...!!!

Here we review three approaches on fitting the Additive hazards model

Least squares approach

- Aalen (1980) used formal least squares principle for nonparametric additive hazard model
- Firstly obtained cumulative versions of the estimates using continuous data
- Then, the coefficients can be estimated from the slope of the cumulative estimates
- Leads to well-known Nelson-Aalen estimate for cumulative hazard estimation

*Could not extend this model for interval censored data

Maximum Likelihood (ML) approach

- Ghosh (2001) and Zeng et al.(2006) developed ML approach for additive hazards model.
- Ghosh fits the additive hazards model by estimating β and a cumulative baseline hazard function $H_0(.)$
 - Used primal-dual interior point algorithm
 - Algorithm imposes contraints of positivity & monotonic increasing on $H_0(.)$ and the cumulative hazard $H_i(.)$
- Zeng et al. fit the additive hazards model with interval censored data
 - Using the log likelihood function which is expressed in terms of $S_0(.)$ and β
 - This constraints positivity and monotonic decreasing on $S_0(.)$ by using a logarithm transformation

* Here the way the constraints are imposed can make the estimation procedure unstable when the baseline survival estimate approaches zero.

Generalized Linear Model (GLM) approach

- Farrington (1996) fits the additive hazards model for interval censored data using a generalized linear model (GLM) approach
 - The occurrences left, right and interval censored observations are assumed to be from indepedent Bernoulli trials
 - Occurrence probability is related to a linear predictor by a negative log link function
 - Then β and $h_0(.)$ can be estimated by fitting the generalized linear model
 - The baseline hazard $h_0(.)$ is assumed to be piecewise constant over some intervals

*Neither non-negativity nor smoothness of the $h_0(.)$ can be guaranteed

Simulation results : study ONE – Right censored data MSE comparison

Simulation results : study TWO – Interval censored data MSE comparison

Simulation results : study TWO – Interval censored data Bias & Variance comparison

Simulation results : study TWO – Interval censored data Bias & Variance comparison

