Biometrics Hobart 2015

Malcolm Hudson

Department of Statistics, Faculty of Science, Macquarie University and NHMRC Clinical Trials Centre, University of Sydney

December 2015

For your consideration

Hans Rosling

You use statistics all the time – for the weather forecast or calculating your income.

And whether you're talking about it with other academics or in the pub, these are topics that matter to people.

Brad Efron

Statistics has been the most successful information science. Those who ignore statistics are condemned to reinvent it.

Those who ignore Statistics are condemned to reinvent it.

- Bradley Ekron

AZ QUOTES

Factors affecting treatment recurrence

a case study with longitudinal hospital retreatment records

- ▶ Collaboration with Profs. M. Barton, UNSW and G Delaney, SWSHS
- \triangleright Macquarie University PhD thesis (2011) of Dr Zhixin Luo
- \triangleright Topic involves counting repeat visits after the first

Case study

Patterns of Retreatment by Radiotherapy in Liverpool Hospital (LMCTC)

- \triangleright 6200 cancer patients were followed after initial RT in the period 1997-2006
	- follow-up to March, 2011 (from 4- years to $12+$ years f/u)
	- \blacktriangleright 1453 retreatments
	- \blacktriangleright 3066 deaths
	- \rightarrow 3127 remained alive at study end
- \triangleright event outcomes retreatments and deaths
- \triangleright supplemented by NSW State Cancer Registry mortality data
- \blacktriangleright descriptive analysis¹ available

Survival with intermediate events

- \triangleright recurrent events ('retreatments') ended by a terminal event ('death')
- \triangleright focus on the retreatment process rather than survival
	- \blacktriangleright do we need dates of death?

¹Barton et al, Clinical Oncology 23 (2011) 10-18

Analysis options with competing events

First-event analysis

- \triangleright Complication-free survival time (i.e. time to first event)
- \blacktriangleright $F(t) = P(T \leq t)$, prevalence of event of either cause

Competing risk analysis:

- **Example 2** cause specific $CIF(t) = P(T \leq t, \delta = 1)$
- \triangleright model covariate effects on cause-specific hazard of time to first retreatment
- \triangleright directed at outcome of interest, censor after others (death)

Multiple recurrence analysis

- \blacktriangleright mean numbers of events
- \blacktriangleright mean function $CMF(t) = E(N(t))$
- if $N(t) \in \{0, 1\}$: CMF(t) = F(t), event prevalence

Records of recurring events

Concerns

- \triangleright explain variability in mean numbers
	- \triangleright fixed follow-up or adjust for length of follow-up
- \triangleright association between recurring events and death
- \triangleright CMF permits comparisons (of events per-person)
	- \triangleright despite long follow-up (1999 cohort) and short (2006 cohort)
	- \blacktriangleright is medical practice changing?

MSM diagram: 1.Lung, 2.Breast cancers

 \triangleright State transition diagram and statistics.

- \triangleright Numbers of transitions from each state
- \triangleright [in box] person years (p.y.'s) at risk

Example: Lung cancer (top)

⇒ ratios observed deaths to retreatments remain around **3 to 1**

event rates p.a. rise from 1 in 10 after RT0 to 1 after RT2+

MSM diagram: 1.Lung, 2.Breast cancers

 \triangleright State transition diagram and statistics.

- \triangleright Numbers of transitions from each state
- \triangleright [in box] person years (p.y.'s) at risk

Example: Lung cancer (top)

 \Rightarrow ratios *observed deaths to retreatments* remain around **3 to 1**

 \Rightarrow event rates p.a. rise from **1 in 10** after RT0 to **1** after RT2+

Mean Estimation defined by Events and follow-up

Other cause ignored (OCI)

```
> oci <- subset(d1mcut[,c("id","dob","dst2","type",
+ "episode","t1","t2","status")],
+ type=="Breast")
> head(oci)
```


> **with**(oci, **table**(status))

status censor RT 2271 518

Mean estimates obtained from **survival** package, (start, stop] interval data (AG)

 \blacktriangleright using OCI risk set

A proportional hazards model for the subdistribution of a competing risk Fine, Jason P;Gray, Robert J

Journal of the American Statistical Association; Jun 1999; 94, 446; ProQuest Central pg. 496

3.2 Censoring Complete Data

In smartly designed clinical trials, censoring results only from administrative loss-to-follow up; that is, patients have not failed by the time the data are analyzed. Under this condition, the potential censoring time is always observed, even on individuals who die prior to the time of analysis. We call these data *censoring complete*. We redefine the risk set for the *i*th individual to include the censoring information

$$
R_i = \{j : (C_j \wedge T_j \ge T_i) \cup (T_j \le T_i \cap \varepsilon_j \neq 1 \cap C_j \ge T_i)\}.
$$

where $i \wedge j$ denotes $\min(i, j)$. In our hypothetical cohort, an individual with $\epsilon \neq 1$ is still "at risk" for failure from the cause of interest until time C, when $T < C$. If (T, ε) and C are conditionally independent given the covariate, then the "crude" subdistribution hazard function with censoringcomplete data, $\lambda_{1*} \{t; \mathbf{Z}\}\$, is equivalent to the "net" subdistribution hazard function with complete data, $\lambda_1\{t; \mathbf{Z}\}\$. This \mathbf{H}^{H} , which is a set of \mathbf{H}^{H} ~ 100 $\mathbf{1}$. Let

Results – Subgroups

Cumulative mean numbers: retreatments per 1000 RT patients

Above Table as graph

count

Findings for mean estimation

\triangleright Concerning methods

- \triangleright Since all patients experience at least 4 years follow up, all methods provide the same mean number of events up to time $t = 4$.
- \blacktriangleright Thereafter, some estimates differ.
- In But differences are small, for mean retreatments to $t = 8$ and $t = 12$ years
- \triangleright even for Breast Cancer, with continuing incidence of new retreatments to $12+$ years.
- ▶ Is follow-up of *deaths* necessary in this context?

Theorem: Multiple Cohorts

Assume longitudinal data is available on first recurrence

- homogeneous patient cohorts 1*,* 2*, . . . ,* I :
- a common entry date in each cohort;
- a common exit date (other than death);
- cohort i has a pre-specified length of follow up $\tau_i;$
- - this **administrative censoring** is the only source of censoring.

The empirical CIF of time from entry to *first* recurrence, allowing for death as competing cause, is the empirical CIF of first recurrences alone, and so is independent of times of death.

Theorem Consequences (Corollaries)

 \triangleright Distinct cohorts convenient for thinking about Theorem proof.

- \triangleright proof by induction on number of cohorts
- \triangleright Every individual patient can compose a new cohort
	- \Rightarrow Theorem applies to any study with censoring dates known in advance
- \triangleright The event can be defined to be second, third, ... recurrence.
	- \Rightarrow Theorem applies to whichever event, all event numbers
- \triangleright empirical CMF is calculated from these CIFs
	- \Rightarrow CMF is independent of times of death

Factors affecting mean retreatments

Data analysis

- \triangleright Theorem motivates analysis of patient records using OCI: retreatments only
- relevant risk factors for retreatment(s) and death
	- \triangleright retreatment of Lung cancer patients curtailed by death
	- \blacktriangleright less so for Breast cancer
- \triangleright counting process model or stratified Cox for the recurrent retreatment times alone
- ▶ to illustrate: explore effects of fixed covariate **age**
	- \triangleright the model also adjusts for **cohort** (spline function of year of entry)
	- \blacktriangleright Is follow-up of deaths necessary in this context?

Factors affecting retreatment prevalence in Lung Cancer

- \triangleright Cox model of time to first retreatment, censoring death.
- ▶ Older Lung Cancer patients not utilising retreatment as early as others with Lung Cancer, when death has not intervened

Factors affecting retreatment prevalence in Breast Cancer

▶ Younger and older Breast Cancer patients utilise retreatment earlier

Linear and quadratic coefficients of Age

LMCTC findings: covariate effects

 \triangleright Coefficients, their SEs and P-values differ little between OCI (ignoring deaths) and competing risk analysis (retreatment 1 versus death).

 \triangleright Follow-up of *deaths* does not add much to findings in LMCTC data.

- \blacktriangleright This suggests we may dispense with registry data on deaths:
- \triangleright revert to recurrent event model methods for a single event type
- \triangleright We found no evidence of efficiency gain in estimating CMFs and risk factor effects using death data.

Conclusion

 \blacktriangleright Longitudinal cohort event histories are common

- \triangleright these track transitions (events) from state to state
- \triangleright cohorts often differ in length of follow-up
	- \triangleright we may wish to forecast the future for a recent cohort
	- \triangleright using knowledge from earlier cohorts with longer follow-up
	- \blacktriangleright e.g. predict mean number of events in 10 years
- \triangleright Remaining length of life may also predict mean numbers of events
- \triangleright We have shown that when censoring time is predictable there is no need to know who is alive /dead
	- \triangleright if time of death is known, survival methods should not censor at time of death
	- \triangleright the individual should remain at risk until their prespecified end-of-study
	- \triangleright more complex statistical modelling will provide the same mean estimates

References

- ▶ Barton, Hudson, Delaney et al, Clinical Oncology (2011, 2014)
- ▶ Cook & Lawless, The Statistical Analysis of Recurrent Events, Springer, 2007
- ▶ Cook, Lawless et al JASA 2009
- ▶ Fine, Gray JASA, 94: 496-509, 1999
- Geskus, Biometrics 67, 39-49, 2011
- \blacktriangleright Gooley, Statistics in Medicine, 18, 695-706, 1999
- \triangleright Kalbfleisch & Prentice, The Statistical Analysis of Failure Time Data, Wiley, 2002
- ▶ Lawless, Statistical Models and Methods for Lifetime Data, 2003
- \triangleright Therneau & Grambsch, Modeling Survival Data: Extending the Cox Model, Springer, 2000

Outline

[Topic](#page-2-0)

[Application: Cancer radiotherapy retreatment is South-West Sydney](#page-6-0)

[Theorem](#page-14-0)

[CMF covariates](#page-16-0)

[Conclusion](#page-21-0)

CIF and CMF terminated by death

- ighthroof consider first retreatment (C=1) with competing risk death (C=2)
- \blacktriangleright CIF₁(t): subdistribution $P(T < t, C = 1)$
- \blacktriangleright Recurrent events terminated
	- \triangleright now CMF, counting recurrences, is attenuated by the probability of death

Estimators (first event, recurrence or death)

- \triangleright wrong to use KM by censoring follow-up at death
	- \triangleright there will be no more retreatments
	- \triangleright similarly CIF not estimable by 1- KM(t)
- \triangleright cumulative mean can be estimated by methods of Cook and Lawless²

²Cook, Lawless, et al JASA 2009

Adjusting Nelson-Aalen with composite events

- \triangleright N-A estimator provides CMF of composite recurrence/death
- \triangleright subtract an estimator of cumulative incidence of death, e.g. $(1-KM(t)) \Rightarrow CMF$ of recurrences alone

Methods and data for analysing retreatments

- ▶ A competing risks model separates interpretation of effects on recurrent events and terminal event.
- \triangleright Some factors affect death and event incidence (sometimes in opposite directions).
- \triangleright Difficult to integrate effects on mortality with effects on event numbers
	- \triangleright Can we understand the net effect of a covariate on the CMF?
- \triangleright OCI methods, for administrative censored data, simplify analysis to a single (recurring) event.
- ▶ Our Theorem justifies using Fine and Gray's risk set (i.e. OCI) in estimating net event incidence.

AG model fits of prevalence and CMF

PWP model

 \triangleright N.B. gap time scale

PWP: interpretation

- \triangleright PWP hazards vary by event number
	- \triangleright the Figure provides evidence this is the better model
	- \triangleright metastatic disease; curative vs palliative treatment intent?
	- \triangleright use of PWP to estimate mean numbers of retreatments is hard!
	- \triangleright convolutions. MSM fits

Factors affecting survival: Lung and breast cancer

- For patients treated for Lung Cancer, shorter survival at older ages.
- In Breast Cancer *survival*, age effect is non-monotonic, hazard bottoms at age 50 and accelerates beyond 70.
- \blacktriangleright In Breast cancer, age and cohort effects are strongly significant.