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For your consideration
Hans Rosling
You use statistics all the time – for the weather forecast or calculating your
income.
And whether you’re talking about it with other academics or in the pub,
these are topics that matter to people.

Brad Efron
Statistics has been the most successful information science.
Those who ignore statistics are condemned to reinvent it.



Factors affecting treatment recurrence

a case study with longitudinal hospital retreatment records
I Collaboration with Profs. M. Barton, UNSW and G Delaney, SWSHS
I Macquarie University PhD thesis (2011) of Dr Zhixin Luo
I Topic involves counting repeat visits after the first



Case study

Patterns of Retreatment by Radiotherapy in Liverpool Hospital (LMCTC)
I 6200 cancer patients were followed after initial RT in the period

1997-2006
I follow-up to March, 2011 (from 4- years to 12+ years f/u)
I 1453 retreatments
I 3066 deaths
I 3127 remained alive at study end

I event outcomes retreatments and deaths
I supplemented by NSW State Cancer Registry mortality data
I descriptive analysis1 available

Survival with intermediate events
I recurrent events (‘retreatments’) ended by a terminal event (‘death’)
I focus on the retreatment process rather than survival

I do we need dates of death?

1Barton et al, Clinical Oncology 23 (2011) 10–18



Analysis options with competing events

First-event analysis
I Complication-free survival time (i.e. time to first event)
I F (t) = P(T ≤ t), prevalence of event of either cause

Competing risk analysis:
I cause specific CIF (t) = P(T ≤ t, δ = 1)
I model covariate effects on cause-specific hazard of time to first

retreatment
I directed at outcome of interest, censor after others (death)

Multiple recurrence analysis
I mean numbers of events
I mean function CMF (t) = E (N(t))
I if N(t) ∈ {0, 1}: CMF (t) = F (t), event prevalence



Records of recurring events

Concerns
I explain variability in mean numbers

I fixed follow-up or adjust for length of follow-up
I association between recurring events and death
I CMF permits comparisons (of events per-person)

I despite long follow-up (1999 cohort) and short (2006 cohort)
I is medical practice changing?



MSM diagram: 1.Lung, 2.Breast cancers
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I State transition diagram and statistics.
I Numbers of transitions from each state
I [in box] person years (p.y.’s) at risk

Example: Lung cancer (top)
⇒ ratios observed deaths to retreatments remain around 3 to 1
⇒ event rates p.a. rise from 1 in 10 after RT0 to 1 after RT2+
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Mean Estimation defined by Events and follow-up

Method Events data Intervals censor time Reference
OCI retreatments RT0-RTk, RT0-eof censor at eof KP, ZM
C-L retreatments and death RT0-RTk, RT0-death death (or eof) CL 4.1
Pepe2 retreatments and death RT0-RTk, RT0-death death (or eof) CL 4.2
N-A death/RT (composite) RT0 -‘event’ eof *
A-J retreatments and death inter-events-death death (or eof) CL 4.3

eof = End date of follow-up CL = Cook, Lawless et al, JASA, 2009
RT0 = Date of initial radiotherapy KP = Kalbfleisch & Prentice (text)
RTk = Date of k-th retreatment ZM = Zhang-Salomons and Mackillop,

Comp.Meth.Prog.Biomed., 2008



Other cause ignored (OCI)
> oci <- subset(d1mcut[,c("id","dob","dst2","type",
+ "episode","t1","t2","status")],
+ type=="Breast")
> head(oci)

id dob dst2 type episode t1 t2 status
2 1011145 1938-01-27 1997-05-05 Breast 1 0 5062 censor
3 1011148 1936-03-25 1997-05-06 Breast 1 0 5061 censor
5 1011157 1944-03-22 1997-05-05 Breast 1 0 5062 censor
9 1011159 1951-03-19 1997-05-05 Breast 1 0 5062 censor
15 1011162 1941-01-27 1997-05-07 Breast 1 0 49 RT
16 1011162 1941-01-27 1997-05-07 Breast 2 49 5060 censor

> with(oci, table(status))

status
censor RT

2271 518

Mean estimates obtained from survival package, (start, stop] interval data (AG)
I using OCI risk set



\



Results – Subgroups

Cumulative mean numbers: retreatments per 1000 RT patients
LUNG CANCER
Method Year

2 4 8 12
OCI 304 323 320 332
C-L 303 322 328 331
Pepe 304 323 329 332
Composite 304 323 328 329
A-J 304 323 329 332
BREAST CANCER
Method Year

2 4 8 12
OCI 86 151 232 263
C-L 86 151 233 265
Pepe 86 151 233 265
Composite 86 151 232 263
A-J 89 151 230 262



Above Table as graph
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Findings for mean estimation

I Concerning methods
I Since all patients experience at least 4 years follow up, all methods

provide the same mean number of events up to time t = 4.
I Thereafter, some estimates differ.
I But differences are small, for mean retreatments to t = 8 and t = 12

years
I even for Breast Cancer, with continuing incidence of new retreatments

to 12+ years.
I Is follow-up of deaths necessary in this context?



Theorem: Multiple Cohorts

Assume longitudinal data is available on first recurrence
- homogeneous patient cohorts 1, 2, . . . , I :
- a common entry date in each cohort;
- a common exit date (other than death);
- cohort i has a pre-specified length of follow up τi ;
- this administrative censoring is the only source of censoring.

The empirical CIF of time from entry to first recurrence, allowing for death
as competing cause, is the empirical CIF of first recurrences alone, and so
is independent of times of death.



Theorem Consequences (Corollaries)

I Distinct cohorts convenient for thinking about Theorem proof.
I proof by induction on number of cohorts

I Every individual patient can compose a new cohort
⇒ Theorem applies to any study with censoring dates known in advance

I The event can be defined to be second, third, ... recurrence.
⇒ Theorem applies to whichever event, all event numbers

I empirical CMF is calculated from these CIFs
⇒ CMF is independent of times of death



Factors affecting mean retreatments

Data analysis
I Theorem motivates analysis of patient records using OCI:

retreatments only
I relevant risk factors for retreatment(s) and death

I retreatment of Lung cancer patients curtailed by death
I less so for Breast cancer

I counting process model or stratified Cox for the recurrent retreatment
times alone

I to illustrate: explore effects of fixed covariate age
I the model also adjusts for cohort (spline function of year of entry)
I Is follow-up of deaths necessary in this context?



Factors affecting retreatment prevalence in Lung Cancer
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I Cox model of time to first retreatment, censoring death.
I Older Lung Cancer patients not utilising retreatment as early as

others with Lung Cancer, when death has not intervened



Factors affecting retreatment prevalence in Breast Cancer
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I Younger and older Breast Cancer patients utilise retreatment earlier



Linear and quadratic coefficients of Age

Method Age (linear) Age (quadratic)
β̂1 P-val β̂2 P-val

LUNG CANCER
OCI ep 1 -0.045 0.02 -0.122 P<0.001
CR ep 1 -0.040 0.04 -0.138 P<0.001
CR ep 2+ -0.006 NS -0.119 P<0.001
PWP (all) -0.032 0.07 -0.143 P<0.001

BREAST CANCER
OCI ep 1 0.009 NS 0.133 P<0.001
CR ep 1 0.017 NS 0.173 P<0.001
CR ep 2+ -0.016 NS 0.000 NS
PWP (all) 0.000 NS 0.095 P<0.001



LMCTC findings: covariate effects

I Coefficients, their SEs and P-values differ little between OCI (ignoring
deaths) and competing risk analysis (retreatment 1 versus death).

I Follow-up of deaths does not add much to findings in LMCTC data.
I This suggests we may dispense with registry data on deaths:
I revert to recurrent event model methods for a single event type

I We found no evidence of efficiency gain in estimating CMFs and risk
factor effects using death data.



Conclusion

I Longitudinal cohort event histories are common
I these track transitions (events) from state to state
I cohorts often differ in length of follow-up

I we may wish to forecast the future for a recent cohort
I using knowledge from earlier cohorts with longer follow-up
I e.g. predict mean number of events in 10 years

I Remaining length of life may also predict mean numbers of events
I We have shown that when censoring time is predictable there is no

need to know who is alive /dead
I if time of death is known, survival methods should not censor at time

of death
I the individual should remain at risk until their prespecified

end-of-study
I more complex statistical modelling will provide the same mean

estimates
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Outline
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Application: Cancer radiotherapy retreatment is South-West Sydney
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CMF covariates

Conclusion



CIF and CMF terminated by death

I consider first retreatment (C=1) with competing risk death (C=2)
I CIF1(t): subdistribution P(T < t,C = 1)
I Recurrent events terminated

I now CMF, counting recurrences, is attenuated by the probability of
death



Estimators (first event, recurrence or death)

I wrong to use KM by censoring follow-up at death
I there will be no more retreatments
I similarly CIF not estimable by 1- KM(t)

I cumulative mean can be estimated by methods of Cook and Lawless2

2Cook, Lawless, et al JASA 2009



Adjusting Nelson-Aalen with composite events

I N-A estimator provides CMF of composite recurrence/death
I subtract an estimator of cumulative incidence of death, e.g.

(1-KM(t)) ⇒ CMF of recurrences alone



Methods and data for analysing retreatments

I A competing risks model separates interpretation of effects on
recurrent events and terminal event.

I Some factors affect death and event incidence (sometimes in opposite
directions).

I Difficult to integrate effects on mortality with effects on event
numbers

I Can we understand the net effect of a covariate on the CMF?
I OCI methods, for administrative censored data, simplify analysis to a

single (recurring) event.
I Our Theorem justifies using Fine and Gray’s risk set (i.e. OCI) in

estimating net event incidence.



AG model fits of prevalence and CMF
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PWP model
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I N.B. gap time scale



PWP: interpretation

I PWP hazards vary by event number
I the Figure provides evidence this is the better model
I metastatic disease; curative vs palliative treatment intent?
I use of PWP to estimate mean numbers of retreatments is hard!
I convolutions, MSM fits



Factors affecting survival: Lung and breast cancer

I For patients treated for Lung Cancer, shorter survival at older ages.
I In Breast Cancer survival, age effect is non-monotonic, hazard

bottoms at age 50 and accelerates beyond 70.
I In Breast cancer, age and cohort effects are strongly significant.
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