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Introduction

I In problems with a time to event outcome, competing risks may
arise when subjects experience events which prevent the outcome of
interest in the study being observed

I Methods analogous to the logrank test and proportional hazard
models are commonly used to account for the competing risks (Fine
and Gray model)

I Correlated competing risk is problematic
I Poor understanding of their effect in inference
I Estimation of the correlation is methodologically problematic
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Aims

I Knowledge of the level of correlation between two different risks

I Assess the effects of correlation between two risks on the hazard
ratio (HR) estimator for a treatment versus a control

I assist in the understanding and interpretation of the results of
competing risk analysis

I Apply this to an actual study in Head and Neck cancer where
competing risks are present
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The bivariate normal censored model

I We examine the problem of correlation assuming the normal
distribution where methods are both developed and understood

I The logarithm of a time to event may satisfy the normality
assumption (e.g. symmetric distribution)

I We propose a bivariate censored normal model
I We can use EM algorithm to estimate the means, variances and

correlation between two competing events
I We can also estimate these quantities using EM algorithm for a

prespecified correlation
I This approach allows us to impute the survival time for the censored

events where censoring was due to occurrence of a competing event,
loss to follow up or end of the study



Bivariate survival data

I Y1: logarithm of the time to event of the cause of interest (event 1)
I Y2: logarithm of the time to event of another cause (event 2)
I Z : covariates vector
I (Y1,Y2) follows a bivariate normal distribution with, for i = 1, 2,

I E(Yi ) = µi = βi Z ′, where βi is coefficient vector
I Var(Yi ) = σ2

i
I Corr(Y1,Y2) = ρ

I n: the sample size
I τ : the end of the study



Bivariate survival data
For each individual

I We observe:

X = min(Y1,Y2, τ)

I and the indicating variable

δ =


1 : if the event of interest occurs
2 : if a competing risk occurs
0 : if the subject is censored

I We assume that 80% of events of interest would occur before the end
of follow-up (but may be censored by the other cause)



Performance of the EM algorithm in bivariate normal
censored model

Simulation studies:

I µ1 = µ2 = σ1 = σ2 = 1 and for different values of ρ, generate a
dataset of n = 1000 pairs (X , δ)

I For this data, we use the EM algorithm to estimate the means,
variances and correlation

I Repeat this 1000 times



Plot of the EM algorithm convergence for a typical dataset
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Estimation of the correlation
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Effects of correlation on hazard ratio estimation

Simulation studies:

I Clinical trial with two groups
I 500 patients are under treatment (T)
I 500 patients are under control (C)
I 80% of events of interest would occur before the end of follow-up
I Event 1 : µT

1 = 1, HR1 = 0.5, σ1 = 1
I Event 2 : µT

2 = 1, HR2 = 1, σ2 = 1
I Different correlations ρ ∈ {0, 0.2, 0.4}



Effects of correlation on hazard ratio estimation

I Methods compared are regression coefficient estimates in:
I the PH model (subject who have the competing risk are censored)
I the Fine and Gray model
I the bivariate censored normal model using EM algorithm

I Imputation in the E-step can use prespecified correlation (ρBCN)
I Imputation can use EM estimator of correlation



Effects of correlation on hazard ratio estimation

0.3 0.4 0.5 0.6 0.7

True correlation ρ = 0.2

HR

ρBCN = 0.5
ρBCN = 0.4
ρBCN = 0.3
ρBCN = 0.2
ρBCN = 0.1
ρBCN = 0

Sensitivity

EM estimate of ρ
BNC model

Fine and Gray

PH

ρ̂ = 0.15



Effects of correlation on hazard ratio estimation
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Example

I The study compared patients with Head and Neck cancer:
I receiving radiotherapy (XRT)
I receiving surgery with adjuvant radiotherapy

I The events are recorded as:
I local regional relapse only (Event 1 - Ca)
I other causes: distant relapse, intercurrent deaths (Event 2 - OC)

I Patients are censored due to loss to follow up or the end of study
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Distribution
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Cumulative incidence functions
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Hazard ratio estimation
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Conclusion

I Slight underestimation of correlation with bivariate censored normal
model

I We need to do a sensitivity analysis for prespecified ρ
I The correlation level has an impact on the hazard ratio estimation

I Fine and Gray appears robust when the risks are moderately correlated
I The BNC model is an alternative in presence of high correlation

I Sensitivity analysis can help to determine the upper bound of
potential correlation

I provides a method to assist estimation of correlation between risks
I may be useful in the design of later studies.
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