Estimating correlation between competing risks

Valerie Gares¹, Malcolm Hudson^{1,2}, Val Gebski¹

¹NHMRC Clinical Trials Centre, Sydney Univ. ²Department of Statistics, Macquarie Univ.

December 2015, Biometrics by the harbour

Introduction

- In problems with a time to event outcome, competing risks may arise when subjects experience events which prevent the outcome of interest in the study being observed
- Methods analogous to the logrank test and proportional hazard models are commonly used to account for the competing risks (Fine and Gray model)
- Correlated competing risk is problematic
 - ▶ Poor understanding of their effect in inference
 - ▶ Estimation of the correlation is methodologically problematic

Introduction

- In problems with a time to event outcome, competing risks may arise when subjects experience events which prevent the outcome of interest in the study being observed
- Methods analogous to the logrank test and proportional hazard models are commonly used to account for the competing risks (Fine and Gray model)
- Correlated competing risk is problematic
 - Poor understanding of their effect in inference
 - ► Estimation of the correlation is methodologically problematic

Aims

► Knowledge of the level of **correlation** between two different risks

- Assess the effects of correlation between two risks on the hazard ratio (HR) estimator for a treatment versus a control
 - assist in the understanding and interpretation of the results of competing risk analysis
- Apply this to an actual study in Head and Neck cancer where competing risks are present

Aims

- Knowledge of the level of correlation between two different risks
- Assess the effects of correlation between two risks on the hazard ratio (HR) estimator for a treatment versus a control
 - assist in the understanding and interpretation of the results of competing risk analysis
- Apply this to an actual study in Head and Neck cancer where competing risks are present

Aims

- ► Knowledge of the level of **correlation** between two different risks
- Assess the effects of correlation between two risks on the hazard ratio (HR) estimator for a treatment versus a control
 - assist in the understanding and interpretation of the results of competing risk analysis
- Apply this to an actual study in Head and Neck cancer where competing risks are present

The bivariate normal censored model

- We examine the problem of correlation assuming the normal distribution where methods are both developed and understood
- ► The logarithm of a time to event may satisfy the **normality assumption** (e.g. symmetric distribution)
- We propose a bivariate censored normal model
 - We can use EM algorithm to estimate the means, variances and correlation between two competing events
 - We can also estimate these quantities using EM algorithm for a prespecified correlation
- ► This approach allows us to **impute** the survival time for the censored events where censoring was due to occurrence of a competing event, loss to follow up or end of the study

Bivariate survival data

- \triangleright Y_1 : logarithm of the time to event of the cause of interest (event 1)
- \triangleright Y_2 : logarithm of the time to event of another cause (event 2)
- ► Z: covariates vector
- (Y_1, Y_2) follows a **bivariate normal distribution** with, for i = 1, 2,
 - $\mathbb{E}(Y_i) = \mu_i = \beta_i Z'$, where β_i is coefficient vector
 - $\operatorname{Var}(Y_i) = \sigma_i^2$
 - $\mathsf{Corr}(Y_1, Y_2) = \rho$
- ▶ n: the sample size
- ightharpoonup au: the end of the study

Bivariate survival data

For each individual

▶ We observe:

$$X = \min(Y_1, Y_2, \tau)$$

and the indicating variable

$$\delta = \begin{cases} 1: & \text{if the event of interest occurs} \\ 2: & \text{if a competing risk occurs} \\ 0: & \text{if the subject is censored} \end{cases}$$

▶ We assume that 80% of events of interest would occur before the end of follow-up (but may be censored by the other cause)

Performance of the EM algorithm in bivariate normal censored model

Simulation studies:

- $\mu_1 = \mu_2 = \sigma_1 = \sigma_2 = 1$ and for different values of ρ , generate a dataset of n = 1000 pairs (X, δ)
- ► For this data, we use the EM algorithm to estimate the means, variances and correlation
- Repeat this 1000 times

Plot of the EM algorithm convergence for a typical dataset $\rho=0.2\,$

Estimation of the correlation

Simulation studies:

- Clinical trial with two groups
 - ▶ 500 patients are under treatment (T)
 - ▶ 500 patients are under control (C)
 - ightharpoonup 80% of events of interest would occur before the end of follow-up
 - Event 1: $\mu_1^T = 1$, $HR_1 = 0.5$, $\sigma_1 = 1$
 - Event 2: $\mu_2^T = 1$, $HR_2 = 1$, $\sigma_2 = 1$
 - ▶ Different correlations $\rho \in \{0, 0.2, 0.4\}$

- ▶ Methods compared are regression coefficient estimates in:
 - ▶ the PH model (subject who have the competing risk are censored)
 - the Fine and Gray model
 - the bivariate censored normal model using EM algorithm
 - ▶ Imputation in the E-step can use prespecified correlation (ρ_{BCN})
 - Imputation can use EM estimator of correlation

Example

- ▶ The study compared patients with Head and Neck cancer:
 - receiving radiotherapy (XRT)
 - receiving surgery with adjuvant radiotherapy
- ▶ The events are recorded as:
 - ▶ local regional relapse only (Event 1 Ca)
 - ▶ other causes: distant relapse, intercurrent deaths (Event 2 OC)
- ▶ Patients are censored due to loss to follow up or the end of study

Example

- ▶ The study compared patients with Head and Neck cancer:
 - receiving radiotherapy (XRT)
 - receiving surgery with adjuvant radiotherapy
- ▶ The events are recorded as:
 - local regional relapse only (Event 1 Ca)
 - other causes: distant relapse, intercurrent deaths (Event 2 OC)
- Patients are censored due to loss to follow up or the end of study

Distribution

Cumulative incidence functions

Hazard ratio estimation

Conclusion

- Slight underestimation of correlation with bivariate censored normal model
 - lacktriangle We need to do a sensitivity analysis for prespecified ho
- ▶ The correlation level has an impact on the hazard ratio estimation
 - Fine and Gray appears robust when the risks are moderately correlated
 - ▶ The BNC model is an alternative in presence of high correlation
- Sensitivity analysis can help to determine the upper bound of potential correlation
 - provides a method to assist estimation of correlation between risks
 - may be useful in the design of later studies.

Thanks

Thank you for your attention

- ▶ Buckley, J. and James, I. Linear regression with censored data. Biometrika, 66(3):429.436, 1979.
- ▶ Jin Z., Lin D.Y. and Ying Z. On least-squares regression with censored data. Biometrika, 93(1):147.161, 2006.
- ► Crowder M. On the identialibility crisis in competing risks analysis. Scandinavian Journal of Statistics, 18(3):22.233, 1991.
- ► Fine J. P. and Gray R. J. A proportional hazards model for the subdistribution of a competing risk. Journal of the American Statistical Association, 94:496. 509, 1999.