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Longitudinal data with drop-outs

Yi = (Yi1, . . . ,Yi(Ui−1),YiUi
, . . . ,YiJ)

The SMI study
(sleep-maintenance insomnia)

n =962 patients randomized
to placebo (Xi = 0) or
treatment (Xi = 1).

Scores measuring quality of
sleep collected through 6
periods.

Goal: Inference about the
treatment effect

θ =E(Yi5 − Yi0|Xi = 1)

− E(Yi5 − Yi0|Xi = 0)

22% dropped-out Visit

W
ak

e−
tim

e 
af

te
r 

sl
ee

p 
on

se
t (

m
in

)

50

100

150

200

250

300

Baseline 1 2 3 4 5
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Consequences of missing outcomes

Loss of precision + Need assumptions about missingness

Rubin’s taxonomy (Rubin 1976)

MAR if missingness probability is conditionally independent of missing outcome

given covariates and observed outcomes.

• Missing and observed data can be assumed to share conditional distribution.

• No further assumptions needed to draw valid inferences from available data.

MNAR otherwise.

• Conditional distributions of observed and missing data differ.

• Need to make further assumptions to address the identifiability issues.

But not possible to assess from data whether MAR or MNAR (Molenberghs et al. 2008).

⇒ Sensitivity Analyses

3



Consequences of missing outcomes

Loss of precision + Need assumptions about missingness

Rubin’s taxonomy (Rubin 1976)

MAR if missingness probability is conditionally independent of missing outcome

given covariates and observed outcomes.

• Missing and observed data can be assumed to share conditional distribution.

• No further assumptions needed to draw valid inferences from available data.

MNAR otherwise.

• Conditional distributions of observed and missing data differ.

• Need to make further assumptions to address the identifiability issues.

But not possible to assess from data whether MAR or MNAR (Molenberghs et al. 2008).

⇒ Sensitivity Analyses

3



Consequences of missing outcomes

Loss of precision + Need assumptions about missingness

Rubin’s taxonomy (Rubin 1976)

MAR if missingness probability is conditionally independent of missing outcome

given covariates and observed outcomes.

• Missing and observed data can be assumed to share conditional distribution.

• No further assumptions needed to draw valid inferences from available data.

MNAR otherwise.

• Conditional distributions of observed and missing data differ.

• Need to make further assumptions to address the identifiability issues.

But not possible to assess from data whether MAR or MNAR (Molenberghs et al. 2008).

⇒ Sensitivity Analyses

3



Consequences of missing outcomes

Loss of precision + Need assumptions about missingness

Rubin’s taxonomy (Rubin 1976)

MAR if missingness probability is conditionally independent of missing outcome

given covariates and observed outcomes.

• Missing and observed data can be assumed to share conditional distribution.

• No further assumptions needed to draw valid inferences from available data.

MNAR otherwise.

• Conditional distributions of observed and missing data differ.

• Need to make further assumptions to address the identifiability issues.

But not possible to assess from data whether MAR or MNAR (Molenberghs et al. 2008).

⇒ Sensitivity Analyses

3



Consequences of missing outcomes

Loss of precision + Need assumptions about missingness

Rubin’s taxonomy (Rubin 1976)

MAR if missingness probability is conditionally independent of missing outcome

given covariates and observed outcomes.

• Missing and observed data can be assumed to share conditional distribution.

• No further assumptions needed to draw valid inferences from available data.

MNAR otherwise.

• Conditional distributions of observed and missing data differ.

• Need to make further assumptions to address the identifiability issues.

But not possible to assess from data whether MAR or MNAR (Molenberghs et al. 2008).

⇒ Sensitivity Analyses

3



Snapshot of incomplete longitudinal data literature

Covariate-dependent drop-out: CC

MAR: Direct likelihood, WGEE, MI, MI-GEE, Doubly-robust estimators...

MNAR: Selection models, pattern-mixture models, shared-parameter
models (‘joint models’)

Sensitivity analyses:

• Global and local influence diagnostics from a single model.
• Consider a finite set of models with different structural and/or

distributional assumptions.
• Consider a family of MNAR models indexed by a parameter quantifying

the distance from MAR.
(Little 1994, Schaferstein et al. 1999, Daniels and Hogan 2000, Molenberghs et al. 2001,...)

• Sensitivity parameter approach (Daniels and Wang 2009, Hogan 2009)
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A family of PMMs for longitudinal data

A family of Linear mixed models (LMM) that assumes different trajectories for the

observed (Rij = 0) and missing (Rij = 1) outcomes:

Yij = X′
ijβ + Z′

ijbi + κRij + εij , εij ∼ N(0, σ2), bi ∼ N(0,G)

The distribution of the missing outcomes is identified up to the sensitivity parameter κ
which quantifies:

Degree of departure from MAR, which is equivalent to κ = 0 (‘centered’ at MAR).

Shift in the expected trajectory of missing outcomes wrt observed outcomes.

Varying κ over a set of plausible values enables assessment of sensitivity.

Allowing κ = κ(Xij) we can model key characteristics of the missing outcome
distribution that may affect inferences about the parameter of interest.
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A picture is worth 1000 words...

SMI example: Expected trajectories for a patient in the treatment group
who dropped-out after visit 2.
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Practical implementation

To obtain estimates of marginal parameters, a practical and unified approach is MI.

Step 1 Fit the LMM to the available data to obtain β̂, v̂ar(β̂), b̂i , v̂ar(b̂i ), σ̂2.

Step 2 Impute the missing outcomes m times by drawing values from the LMM
using these estimates and the chosen κ(Xij). This yields m completed
datasets.

Step 3 Estimate the marginal parameter of interest θ and its variance from
each completed dataset by using a complete data method.

Step 4 Use Rubin’s formulas to combine estimates into a single inference.

MI-based implementation makes it easy to do several analyses over a range of κ(Xij).

7



Practical implementation

To obtain estimates of marginal parameters, a practical and unified approach is MI.

Step 1 Fit the LMM to the available data to obtain β̂, v̂ar(β̂), b̂i , v̂ar(b̂i ), σ̂2.

Step 2 Impute the missing outcomes m times by drawing values from the LMM
using these estimates and the chosen κ(Xij). This yields m completed
datasets.

Step 3 Estimate the marginal parameter of interest θ and its variance from
each completed dataset by using a complete data method.

Step 4 Use Rubin’s formulas to combine estimates into a single inference.

MI-based implementation makes it easy to do several analyses over a range of κ(Xij).

7



Practical implementation

To obtain estimates of marginal parameters, a practical and unified approach is MI.

Step 1 Fit the LMM to the available data to obtain β̂, v̂ar(β̂), b̂i , v̂ar(b̂i ), σ̂2.

Step 2 Impute the missing outcomes m times by drawing values from the LMM
using these estimates and the chosen κ(Xij). This yields m completed
datasets.

Step 3 Estimate the marginal parameter of interest θ and its variance from
each completed dataset by using a complete data method.

Step 4 Use Rubin’s formulas to combine estimates into a single inference.

MI-based implementation makes it easy to do several analyses over a range of κ(Xij).

7



Practical implementation

To obtain estimates of marginal parameters, a practical and unified approach is MI.

Step 1 Fit the LMM to the available data to obtain β̂, v̂ar(β̂), b̂i , v̂ar(b̂i ), σ̂2.

Step 2 Impute the missing outcomes m times by drawing values from the LMM
using these estimates and the chosen κ(Xij). This yields m completed
datasets.

Step 3 Estimate the marginal parameter of interest θ and its variance from
each completed dataset by using a complete data method.

Step 4 Use Rubin’s formulas to combine estimates into a single inference.

MI-based implementation makes it easy to do several analyses over a range of κ(Xij).

7



Practical implementation

To obtain estimates of marginal parameters, a practical and unified approach is MI.

Step 1 Fit the LMM to the available data to obtain β̂, v̂ar(β̂), b̂i , v̂ar(b̂i ), σ̂2.

Step 2 Impute the missing outcomes m times by drawing values from the LMM
using these estimates and the chosen κ(Xij). This yields m completed
datasets.

Step 3 Estimate the marginal parameter of interest θ and its variance from
each completed dataset by using a complete data method.

Step 4 Use Rubin’s formulas to combine estimates into a single inference.

MI-based implementation makes it easy to do several analyses over a range of κ(Xij).

7



Practical implementation

To obtain estimates of marginal parameters, a practical and unified approach is MI.

Step 1 Fit the LMM to the available data to obtain β̂, v̂ar(β̂), b̂i , v̂ar(b̂i ), σ̂2.

Step 2 Impute the missing outcomes m times by drawing values from the LMM
using these estimates and the chosen κ(Xij). This yields m completed
datasets.

Step 3 Estimate the marginal parameter of interest θ and its variance from
each completed dataset by using a complete data method.

Step 4 Use Rubin’s formulas to combine estimates into a single inference.

MI-based implementation makes it easy to do several analyses over a range of κ(Xij).

7



Step 2: Imputation procedure for longitudinal data

Imputation procedure for l ∈ {1, . . . ,m}:

(a) Draw β(l) ∼ N(β̂, v̂arβ̂) and b
(l)
i ∼ N(b̂i , v̂arb̂i ) for i = 1, . . . , n.

(b) Draw σ2(l) ∼ σ̂2 ×
(

d
χ2
d

)
.

d = n1 − q = residual degrees of freedom

n1 = number of observations to fit the model

q = trace of ‘hat matrix’ (estimate of effective # of parameters)

(Bates, 2006)

(c) Draw ε
(l)
ij ∼ N(0, σ2(l)).

(d) Impute each missing outcome Yij as

X′
ijβ

(l) + Z′
ijb

(l)
i + κ(Xij) + ε

(l)
ij .

This procedure can be used for MAR analyses taking κ = 0. Currently studying
its use to impute time-dependent covariates for the Cox model.
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Simulation study

Aim: To assess the approach in the realistic situation where the family of
PMMs does not include the true MNAR model that generated the data.

Design mimicked the 2-arm, 6-visit design of the SMI study, with outcomes
generated from:

Yij = jβXi + b0i + jb1i + εij

MNAR drop-outs were generated under a selection model.

Target parameter θ = Expected difference in outcomes at last visit.

Yi5 = θ0 + θXi + εi

A family of PMMs indexed by arm-specific sensitivity parameters k0, k1.

• ‘Best MNAR’ model: k̂0 and k̂1 for which PMM≈ true model.
• Increasing departures from true model: by taking k̂0 and k̂1 as

reference.
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Simulation study: Some results for θ = 1

Drop-out probability lower for subjects with lower outcomes.

Analysis k0 k1 % bias
MAR 0 0 -6.9

MNAR1 k̂0/2 k̂1/2 -2.6

Best MNAR k̂0 k̂1 1.5

MNAR2 2k̂0 2k̂1 10.0

MNAR3 k̂0/2 2k̂1 88.3

MNAR4 2k̂0 k̂1/2 -80.5
CC – – -35.6

Drop-out probability lower for subjects with lower outcomes
& global drop-out probability higher in treatment group.

Analysis k0 k1 % bias
MAR 0 0 -41.7

MNAR1 k̂0/2 k̂1/2 -20.8

Best MNAR k̂0 k̂1 1.9

MNAR2 2k̂0 2k̂1 44.0

MNAR3 k̂0/2 2k̂1 73.6

MNAR4 2k̂0 k̂1/2 -49.4
CC – – -165.0
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Simulation study: Results summary

When PMM ≈ true model: Satisfactory CPs and type I error rates.

When departing from the true model: We observed the variation in the expected
value of the coefficient estimator, which depended on the missingness mechanism
and other factors. The approach is thus suitable for assessing sensitivity.

Moderate upward bias in Rubin’s variance estimator (|MRB| ≤ 10%) resulted in
conservative (yet acceptable) CPs. A consequence of misspecification and
uncongeniality.
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Application to the SMI study

To assess the evidence of a treatment effect: θ=E(Yi5−Yi0|Xi =1)−E(Yi5−Yi0|Xi =0)

Primary analysis: MAR-based MI.

Yij = β0 + β1Xi + β2tj + β3Xi tj + b0i + b1i tj + εij

θ̂ 95% CI p-value
WASO −14.31 [−20.39, −8.23] <0.001
SLREF −0.09 [ −0.17, −0.01] 0.03

WASO=Wake-time after sleep onset (minutes)
SLREF=Sleep refreshing quality (1=excellent to 4=poor)
Means of daily measures over 2/3-week periods; decrease in either is sign of improvement

Secondary analyses: Control of group-specific intercepts of the missing
data distribution.

Yij = β0 + β1Xi + β2tj + β3Xi tj + kXi ς̂5Rij + b0i + b1i tj + εij

k0, k1 since Xi = 0 or 1.
ς̂5 = sample SD of scores at visit 5.
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Sensitivity analysis for θ

θ=E(Yi5−Yi0|Xi =1)−E(Yi5−Yi0|Xi =0)
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For the WASO score, there is strong evidence of a treatment effect in most
scenarios. For the SLREF score, the evidence is fragile and strongly dependent on
missingness assumptions.
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Sensitivity analysis for θ

θ=E(Yi5−Yi0|Xi =1)−E(Yi5−Yi0|Xi =0)

WASO

k0

k 1

−0.4 −0.2 0.0 0.2 0.4

−
0

.4
−

0
.2

0
.0

0
.2

0
.4

●

SLREF

k0

k 1
−0.4 −0.2 0.0 0.2 0.4

−
0

.4
−

0
.2

0
.0

0
.2

0
.4

●

Effect p−valueEffect p−value plausibility

In practice, the plausibility of the scenarios studied needs to be assessed.
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Sensitivity analysis for β3=difference in time-slopes

Control group-specific intercepts and time-slopes of missing data distribution.

Yij = β0 + β1Xi + β2tj + β3Xi tj + κ(Xi , tj ,Si )Rij + b0i + b1i tj + εij

κ(Xi , tj ,Si ) = k (1)

Xi
ς̂ + k (2)

Xi
β̂2(tj − Si )
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Sensitivity analysis for β3: Some results

Scenario k
(1)
Xi

k
(2)
Xi

β̂3 95% CI p-value

MAR − − −0.031 [-0.041, -0.021] <0.001

Modified −0.5 0.5 −0.025 [-0.037, -0.013] <0.001
slopes & −1 1 −0.017 [-0.030, -0.003] 0.019
intercepts

(−1)1−Xi ∗ 0.1 0.5 −0.016 [-0.028, -0.004] 0.004
(−1)1−Xi ∗ 0.1 1 −0.012 [-0.024, 0.000] 0.040

−0.1 (−1)Xi ∗ 0.25 −0.014 [-0.026, -0.002] 0.027
−0.25 (−1)Xi ∗ 0.25 −0.010 [-0.024, 0.004] 0.151

(−1)1−Xi ∗ 0.05 (−1)Xi ∗ 0.05 −0.019 [-0.031, -0.007] 0.001
(−1)1−Xi ∗ 0.1 (−1)Xi ∗ 0.1 −0.011 [-0.022, 0.001] 0.066

For the WASO score, there is evidence of a treatment effect under this definition too
under MAR and across a large range of scenarios departing from this assumption.
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Concluding remarks

Advantages over some previous approaches (e.g. Daniels and Hogan 2000, Ratitch et al. 2013):

• Suitable for studies with large # of measurements or where planned timing
and # of measurements differ across subjects.

• Can be used with intermittent missingness

• Sensitivity parameters with intuitive interpretations (e.g. intercepts,
time-slopes) facilitating the formulation of assumptions.

How to summarize results? (Molenberghs et al. 2001, Vansteelandt et al. 2006)

Ignorance interval = Parameter regions yielded by these approaches
Ignorance interval = e.g. for WASO score, θ̂ ∈ [−25,−5]
Uncertainty interval = Ignorance interval + Confidence interval
Uncertainty interval = Uncertainty due to finite sampling + missing data
Uncertainty interval e.g. for WASO score, θ̂ ∈ [−25− δl ,−5 + δu]

Other issues: non-continuous outcomes, more than one incomplete longitudinal
variable, elicit expert opinions..
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Backup
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Longitudinal data and sensitivity analyses

When modeling longitudinal data with drop-outs, we need to consider the joint
distribution of Yi = (YOi ,Y

M
i ) and Ui = occasion of the first missing outcome:

f (yO, yM, u|ϕ)

= f (yM|yO, u,ϕ)︸ ︷︷ ︸× f (yO, u|ϕ)︸ ︷︷ ︸
Extrapolation Observed

Aim of a sensitivity analysis: To assess the sensitivity of inferences about the
target parameter θ = h(ϕ) to assumptions about the extrapolation model, which
are unverifiable.

A structured and focused approach:
(Little 1994, Schaferstein et al. 1999, Daniels and Hogan 2000, Molenberghs et al. 2001,...)

• Primary analysis: e.g. MAR model.

• Secondary analyses: Consider a large family of MNAR models indexed by a
parameter quantifying the distance from the primary model.
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The sensitivity parameter approach

Pattern-mixture models (PMMs) assume a different response mechanism per drop-out
occasion and require making explicit assumptions about the extrapolation model:

f (yO, yM, u|ϕ) = f (yO, yM|u,ϕ)× f (u|ϕ)

= f (yM|yO, u,ϕ)︸ ︷︷ ︸× f (yO|u,ϕ)× f (u|ϕ)︸ ︷︷ ︸
Extrapolation Observed

(φ,κ) φ

PMMs can be parametrized such that ϕ = (φ,κ); φ is identifiable but κ is not.

Different values of κ yield same fit to the observed data
...but also imply different extrapolation models and different inferences on θ.

κ is called a sensitivity parameter because it “embodies” the source of the sensitivity
of inferences to different unverifiable assumptions about the extrapolation model.
(Daniels and Wang 2009, Hogan 2009)
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Sensitivity analysis for θ

Scenario k0 = k1 = k

−3 −2 −1 0 1 2 3

−
4

0
−

3
0

−
2

0
−

1
0

k

Tr
e

a
tm

e
n

t 
e

ff
e

ct

WASO

−3 −2 −1 0 1 2 3
−

0
.2

−
0

.1
0

.0
0

.1

k

Tr
e

a
tm

e
n

t 
e

ff
e

ct

SLREF
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