Multiple imputation and sensitivity analysis for incomplete longitudinal data departing from the MAR assumption #### Margarita Moreno-Betancur & Michel Chavance (published in Stat Methods Med Res, 2013) Biometrics by the Harbour Hobart, November 30 2015 $$\mathbf{Y}_i = (Y_{i1}, \dots, Y_{i(U_i-1)}, Y_{iU_i}, \dots, Y_{iJ})$$ $$\mathbf{Y}_{i} = (Y_{i1}, \ldots, Y_{i(U_{i}-1)}, Y_{iU_{i}}, \ldots, Y_{iJ})$$ #### The SMI study #### (sleep-maintenance insomnia) ■ n = 962 patients randomized to placebo $(X_i = 0)$ or treatment $(X_i = 1)$. $$\mathbf{Y}_{i} = (Y_{i1}, \dots, Y_{i(U_{i}-1)}, Y_{iU_{i}}, \dots, Y_{iJ})$$ #### The SMI study #### (sleep-maintenance insomnia) - n = 962 patients randomized to placebo $(X_i = 0)$ or treatment $(X_i = 1)$. - Scores measuring quality of sleep collected through 6 periods. $$\mathbf{Y}_{i} = (Y_{i1}, \dots, Y_{i(U_{i}-1)}, Y_{iU_{i}}, \dots, Y_{iJ})$$ #### The SMI study #### (sleep-maintenance insomnia) - n = 962 patients randomized to placebo $(X_i = 0)$ or treatment $(X_i = 1)$. - Scores measuring quality of sleep collected through 6 periods. - Goal: Inference about the treatment effect $$\theta = E(Y_{i5} - Y_{i0}|X_i = 1) - E(Y_{i5} - Y_{i0}|X_i = 0)$$ $$\mathbf{Y}_i = (Y_{i1}, \ldots, Y_{i(U_i-1)}, Y_{iU_i}, \ldots, Y_{iJ})$$ # The SMI study (sleep-maintenance insomnia) - n = 962 patients randomized to placebo ($X_i = 0$) or treatment ($X_i = 1$). - Scores measuring quality of sleep collected through 6 periods. - Goal: Inference about the treatment effect $$\theta = E(Y_{i5} - Y_{i0}|X_i = 1) - E(Y_{i5} - Y_{i0}|X_i = 0)$$ ■ 22% dropped-out $$\mathbf{Y}_i = (Y_{i1}, \ldots, Y_{i(U_i-1)}, Y_{iU_i}, \ldots, Y_{iJ})$$ # The SMI study (sleep-maintenance insomnia) - n = 962 patients randomized to placebo ($X_i = 0$) or treatment ($X_i = 1$). - Scores measuring quality of sleep collected through 6 periods. - Goal: Inference about the treatment effect $$\theta = E(Y_{i5} - Y_{i0}|X_i = 1) - E(Y_{i5} - Y_{i0}|X_i = 0)$$ ■ 22% dropped-out Reasons for drop-outs: side-effects, lack of efficacy, protocol violation... Loss of precision + Need assumptions about missingness Loss of precision + Need assumptions about missingness Rubin's taxonomy (Rubin 1976) Loss of precision + Need assumptions about missingness #### Rubin's taxonomy (Rubin 1976) - MAR if missingness probability is conditionally independent of missing outcome given covariates and observed outcomes. - Missing and observed data can be assumed to share conditional distribution. - No further assumptions needed to draw valid inferences from available data. Loss of precision + Need assumptions about missingness #### Rubin's taxonomy (Rubin 1976) - MAR if missingness probability is conditionally independent of missing outcome given covariates and observed outcomes. - Missing and observed data can be assumed to share conditional distribution. - No further assumptions needed to draw valid inferences from available data. - MNAR otherwise. - Conditional distributions of observed and missing data differ. - Need to make further assumptions to address the identifiability issues. Loss of precision + Need assumptions about missingness #### Rubin's taxonomy (Rubin 1976) - MAR if missingness probability is conditionally independent of missing outcome given covariates and observed outcomes. - Missing and observed data can be assumed to share conditional distribution. - No further assumptions needed to draw valid inferences from available data. - MNAR otherwise. - Conditional distributions of observed and missing data differ. - Need to make further assumptions to address the identifiability issues. But not possible to assess from data whether MAR or MNAR (Molenberghs et al. 2008). #### **⇒ Sensitivity Analyses** #### Snapshot of incomplete longitudinal data literature - Covariate-dependent drop-out: CC - MAR: Direct likelihood, WGEE, MI, MI-GEE, Doubly-robust estimators... - MNAR: Selection models, pattern-mixture models, shared-parameter models ('joint models') - Sensitivity analyses: - Global and local influence diagnostics from a single model. - Consider a finite set of models with different structural and/or distributional assumptions. - Consider a family of MNAR models indexed by a parameter quantifying the distance from MAR. - (Little 1994, Schaferstein et al. 1999, Daniels and Hogan 2000, Molenberghs et al. 2001,...) - Sensitivity parameter approach (Daniels and Wang 2009, Hogan 2009) A family of **Linear mixed models (LMM)** that assumes different trajectories for the observed ($R_{ij} = 0$) and missing ($R_{ij} = 1$) outcomes: $$\mathbf{Y}_{ij} = \mathbf{X}'_{ij}\boldsymbol{\beta} + \mathbf{Z}'_{ij}\mathbf{b}_i + \kappa R_{ij} + \varepsilon_{ij}, \qquad \varepsilon_{ij} \sim N(0, \sigma^2), \qquad \mathbf{b}_i \sim N(\mathbf{0}, \mathbf{G})$$ A family of **Linear mixed models (LMM)** that assumes different trajectories for the observed ($R_{ij} = 0$) and missing ($R_{ij} = 1$) outcomes: $$oxed{Y_{ij} = \mathbf{X}_{ij}' oldsymbol{eta} + \mathbf{Z}_{ij}' \mathbf{b}_i + \kappa R_{ij} + arepsilon_{ij}}, \qquad arepsilon_{ij} \sim \mathcal{N}(\mathbf{0}, \sigma^2), \qquad \mathbf{b}_i \sim \mathcal{N}(\mathbf{0}, \mathbf{G})}$$ The distribution of the missing outcomes is identified up to the sensitivity parameter κ which quantifies: A family of **Linear mixed models (LMM)** that assumes different trajectories for the observed ($R_{ij} = 0$) and missing ($R_{ij} = 1$) outcomes: $$oxed{Y_{ij} = \mathbf{X}_{ij}' oldsymbol{eta} + \mathbf{Z}_{ij}' \mathbf{b}_i + \kappa R_{ij} + arepsilon_{ij}}, \qquad arepsilon_{ij} \sim \mathcal{N}(0, \sigma^2), \qquad \mathbf{b}_i \sim \mathcal{N}(\mathbf{0}, \mathbf{G})$$ The distribution of the missing outcomes is identified up to the sensitivity parameter κ which quantifies: lacksquare Degree of departure from MAR, which is equivalent to $\kappa=0$ ('centered' at MAR). A family of **Linear mixed models (LMM)** that assumes different trajectories for the observed ($R_{ij} = 0$) and missing ($R_{ij} = 1$) outcomes: $$oxed{Y_{ij} = \mathbf{X}_{ij}' oldsymbol{eta} + \mathbf{Z}_{ij}' \mathbf{b}_i + \kappa R_{ij} + arepsilon_{ij}}, \qquad arepsilon_{ij} \sim \mathcal{N}(0, \sigma^2), \qquad \mathbf{b}_i \sim \mathcal{N}(\mathbf{0}, \mathbf{G})$$ The distribution of the missing outcomes is identified up to the sensitivity parameter κ which quantifies: - Degree of departure from MAR, which is equivalent to $\kappa = 0$ ('centered' at MAR). - Shift in the expected trajectory of missing outcomes wrt observed outcomes. A family of **Linear mixed models (LMM)** that assumes different trajectories for the observed ($R_{ij} = 0$) and missing ($R_{ij} = 1$) outcomes: $$oxed{Y_{ij} = \mathbf{X}_{ij}' oldsymbol{eta} + \mathbf{Z}_{ij}' \mathbf{b}_i + \kappa R_{ij} + arepsilon_{ij}}, \qquad arepsilon_{ij} \sim \mathcal{N}(0, \sigma^2), \qquad \mathbf{b}_i \sim \mathcal{N}(\mathbf{0}, \mathbf{G})$$ The distribution of the missing outcomes is identified up to the sensitivity parameter κ which quantifies: - Degree of departure from MAR, which is equivalent to $\kappa = 0$ ('centered' at MAR). - Shift in the expected trajectory of missing outcomes wrt observed outcomes. Varying κ over a set of plausible values enables assessment of sensitivity. A family of **Linear mixed models (LMM)** that assumes different trajectories for the observed ($R_{ij} = 0$) and missing ($R_{ij} = 1$) outcomes: $$oxed{Y_{ij} = \mathbf{X}_{ij}' oldsymbol{eta} + \mathbf{Z}_{ij}' \mathbf{b}_i + \kappa R_{ij} + \varepsilon_{ij}, \qquad \varepsilon_{ij} \sim \mathcal{N}(0, \sigma^2), \qquad \mathbf{b}_i \sim \mathcal{N}(\mathbf{0}, \mathbf{G})}$$ The distribution of the missing outcomes is identified up to the sensitivity parameter κ which quantifies: - Degree of departure from MAR, which is equivalent to $\kappa = 0$ ('centered' at MAR). - Shift in the expected trajectory of missing outcomes wrt observed outcomes. Varying κ over a set of plausible values enables assessment of sensitivity. Allowing $\kappa = \kappa(\mathbf{X}_{ij})$ we can model key characteristics of the missing outcome distribution that may affect inferences about the parameter of interest. #### A picture is worth 1000 words... SMI example: Expected trajectories for a patient in the treatment group who dropped-out after visit 2. Expected for observed outcomes under MAR - ○ · Expected for missing outcomes under MAR - ○ · Expected for missing outcomes under MNAR To obtain estimates of marginal parameters, a practical and unified approach is MI. To obtain estimates of marginal parameters, a practical and unified approach is MI. Step 1 Fit the LMM to the available data to obtain $\hat{\beta}$, $\hat{\mathbf{b}}_i$, $\hat{\mathbf{b}}_i$, $\hat{\mathbf{b}}_i$, $\hat{\mathbf{c}}^2$. To obtain estimates of marginal parameters, a practical and unified approach is MI. - Step 1 Fit the LMM to the available data to obtain $\hat{\beta}$, $var(\hat{\beta})$, $\hat{\mathbf{b}}_i$, $var(\hat{\mathbf{b}}_i)$, $\hat{\sigma}^2$. - Step 2 Impute the missing outcomes m times by drawing values from the LMM using these estimates and the chosen $\kappa(\mathbf{X}_{ij})$. This yields m completed datasets. To obtain estimates of marginal parameters, a practical and unified approach is MI. - Step 1 Fit the LMM to the available data to obtain $\hat{\beta}$, $var(\hat{\beta})$, $\hat{\mathbf{b}}_i$, $var(\hat{\mathbf{b}}_i)$, $\hat{\sigma}^2$. - Step 2 Impute the missing outcomes m times by drawing values from the LMM using these estimates and the chosen $\kappa(X_{ij})$. This yields m completed datasets. - Step 3 Estimate the marginal parameter of interest θ and its variance from each completed dataset by using a complete data method. To obtain estimates of marginal parameters, a practical and unified approach is MI. - Step 1 Fit the LMM to the available data to obtain $\hat{\beta}$, $\hat{\mathbf{b}}_i$, $\hat{\mathbf{b}}_i$, $\hat{\mathbf{c}}^2$. - Step 2 Impute the missing outcomes m times by drawing values from the LMM using these estimates and the chosen $\kappa(\mathbf{X}_{ij})$. This yields m completed datasets. - Step 3 Estimate the marginal parameter of interest θ and its variance from each completed dataset by using a complete data method. - Step 4 Use Rubin's formulas to combine estimates into a single inference. To obtain estimates of marginal parameters, a practical and unified approach is MI. - Step 1 Fit the LMM to the available data to obtain $\hat{\beta}$, $\hat{\mathbf{b}}_i$, $\hat{\mathbf{b}}_i$, $\hat{\mathbf{c}}^2$. - Step 2 Impute the missing outcomes m times by drawing values from the LMM using these estimates and the chosen $\kappa(X_{ij})$. This yields m completed datasets. - Step 3 Estimate the marginal parameter of interest θ and its variance from each completed dataset by using a complete data method. - Step 4 Use Rubin's formulas to combine estimates into a single inference. MI-based implementation makes it easy to do several analyses over a range of $\kappa(X_{ij})$. # Step 2: Imputation procedure for longitudinal data Imputation procedure for $l \in \{1, ..., m\}$: - (a) Draw $oldsymbol{eta}^{(l)} \sim \mathcal{N}(\hat{oldsymbol{eta}}, \hat{\mathsf{var}}\hat{oldsymbol{eta}})$ and $\mathbf{b}_i^{(l)} \sim \mathcal{N}(\hat{\mathbf{b}}_i, \hat{\mathsf{var}}\hat{\mathbf{b}}_i)$ for $i=1,\ldots,n$. - (b) Draw $\sigma^{2(I)} \sim \hat{\sigma}^2 \times \left(\frac{d}{\chi_d^2}\right)$. $d = n_1 q = \text{residual degrees of freedom}$ $n_1 = \text{number of observations to fit the model}$ q = trace of 'hat matrix' (estimate of effective # of parameters)(Bates, 2006) - (c) Draw $\varepsilon_{ij}^{(I)} \sim N(0, \sigma^{2(I)})$. - (d) Impute each missing outcome Y_{ij} as $\mathbf{X}'_{ij}\boldsymbol{\beta}^{(l)} + \mathbf{Z}'_{ij}\mathbf{b}_{i}^{(l)} + \boldsymbol{\kappa}(\mathbf{X}_{ij}) + \varepsilon_{ij}^{(l)}$. This procedure can be used for MAR analyses taking $\kappa = 0$. Currently studying its use to impute time-dependent covariates for the Cox model. ## Simulation study **Aim:** To assess the approach in the realistic situation where the family of PMMs does not include the true MNAR model that generated the data. Design mimicked the 2-arm, 6-visit design of the SMI study, with outcomes generated from: $$Y_{ij} = j\beta X_i + b_{0i} + jb_{1i} + \varepsilon_{ij}$$ - MNAR drop-outs were generated under a selection model. - Target parameter $\theta = \text{Expected difference in outcomes at last visit.}$ $$Y_{i5} = \theta_0 + \theta X_i + \epsilon_i$$ - A family of PMMs indexed by arm-specific sensitivity parameters k_0 , k_1 . - 'Best MNAR' model: \hat{k}_0 and \hat{k}_1 for which PMM \approx true model. - Increasing departures from true model: by taking \hat{k}_0 and \hat{k}_1 as reference. #### Simulation study: Some results for $\theta = 1$ Drop-out probability lower for subjects with lower outcomes. | Analysis | k ₀ | k ₁ | % bias | |-----------|----------------|----------------|--------| | MAR | 0 | 0 | -6.9 | | MNAR1 | $\hat{k}_0/2$ | $\hat{k}_1/2$ | -2.6 | | Best MNAR | \hat{k}_0 | \hat{k}_1 | 1.5 | | MNAR2 | $2\hat{k}_0$ | $2\hat{k}_1$ | 10.0 | | MNAR3 | $\hat{k}_0/2$ | $2\hat{k}_1$ | 88.3 | | MNAR4 | $2\hat{k}_0$ | $\hat{k}_1/2$ | -80.5 | | CC | - | _ | -35.6 | Drop-out probability lower for subjects with lower outcomes & global drop-out probability higher in treatment group. | Analysis | k ₀ | k ₁ | % bias | |-----------|-----------------|----------------|--------| | MAR | 0 | 0 | -41.7 | | MNAR1 | $\hat{k}_{0}/2$ | $\hat{k}_1/2$ | -20.8 | | Best MNAR | \hat{k}_0 | \hat{k}_1 | 1.9 | | MNAR2 | $2\hat{k}_0$ | $2\hat{k}_1$ | 44.0 | | MNAR3 | $\hat{k}_0/2$ | $2\hat{k}_1$ | 73.6 | | MNAR4 | $2\hat{k}_0$ | $\hat{k}_1/2$ | -49.4 | | CC | _ | _ | -165.0 | ## Simulation study: Results summary ■ When PMM ≈ true model: Satisfactory CPs and type I error rates. ■ When departing from the true model: We observed the variation in the expected value of the coefficient estimator, which depended on the missingness mechanism and other factors. The approach is thus suitable for assessing sensitivity. \blacksquare Moderate upward bias in Rubin's variance estimator (|MRB| \leq 10%) resulted in conservative (yet acceptable) CPs. A consequence of misspecification and uncongeniality. To assess the evidence of a treatment effect: $\theta = E(Y_{i5} - Y_{i0} | X_i = 1) - E(Y_{i5} - Y_{i0} | X_i = 0)$ To assess the evidence of a treatment effect: $\theta = E(Y_{i5} - Y_{i0} | X_i = 1) - E(Y_{i5} - Y_{i0} | X_i = 0)$ ■ **Primary analysis:** MAR-based MI. $$Y_{ij} = \beta_0 + \beta_1 X_i + \beta_2 t_j + \beta_3 X_i t_j + b_{0i} + b_{1i} t_j + \varepsilon_{ij}$$ To assess the evidence of a treatment effect: $\theta = E(Y_{i5} - Y_{i0} | X_i = 1) - E(Y_{i5} - Y_{i0} | X_i = 0)$ Primary analysis: MAR-based MI. $$Y_{ij} = \beta_0 + \beta_1 X_i + \beta_2 t_j + \beta_3 X_i t_j + b_{0i} + b_{1i} t_j + \varepsilon_{ij}$$ | | $\hat{ heta}$ | 95% CI | <i>p</i> -value | |-------|---------------|-----------------|-----------------| | WASO | -14.31 | [-20.39, -8.23] | < 0.001 | | SLREF | -0.09 | [-0.17, -0.01] | 0.03 | WASO=Wake-time after sleep onset (minutes) SLREF=Sleep refreshing quality (1=excellent to 4=poor) Means of daily measures over 2/3-week periods; decrease in either is sign of improvement To assess the evidence of a treatment effect: $\theta = E(Y_{i5} - Y_{i0} | X_i = 1) - E(Y_{i5} - Y_{i0} | X_i = 0)$ Primary analysis: MAR-based MI. $$Y_{ij} = \beta_0 + \beta_1 X_i + \beta_2 t_j + \beta_3 X_i t_j + b_{0i} + b_{1i} t_j + \varepsilon_{ij}$$ | | $\hat{ heta}$ | 95% CI | <i>p</i> -value | |-------|---------------|-----------------|-----------------| | WASO | -14.31 | [-20.39, -8.23] | < 0.001 | | SLREF | -0.09 | [-0.17, -0.01] | 0.03 | WASO=Wake-time after sleep onset (minutes) SLREF=Sleep refreshing quality (1=excellent to 4=poor) Means of daily measures over 2/3-week periods; decrease in either is sign of improvement Secondary analyses: Control of group-specific intercepts of the missing data distribution. $$Y_{ij} = \beta_0 + \beta_1 X_i + \beta_2 t_j + \beta_3 X_i t_j + k_{X_i} \hat{\varsigma}_5 R_{ij} + b_{0i} + b_{1i} t_j + \varepsilon_{ij}$$ k_0 , k_1 since $X_i = 0$ or 1. $\hat{\varsigma}_5$ = sample SD of scores at visit 5. ## Sensitivity analysis for θ $$\theta = E(Y_{i5} - Y_{i0}|X_i = 1) - E(Y_{i5} - Y_{i0}|X_i = 0)$$ For the WASO score, there is strong evidence of a treatment effect in most scenarios. For the SLREF score, the evidence is fragile and strongly dependent on missingness assumptions. # Sensitivity analysis for θ $$\theta = E(Y_{i5} - Y_{i0}|X_i = 1) - E(Y_{i5} - Y_{i0}|X_i = 0)$$ In practice, the plausibility of the scenarios studied needs to be assessed. ### Sensitivity analysis for β_3 =difference in time-slopes Control group-specific intercepts and time-slopes of missing data distribution. $$Y_{ij} = \beta_0 + \beta_1 X_i + \beta_2 t_j + \beta_3 X_i t_j + \kappa(X_i, t_j, S_i) R_{ij} + b_{0i} + b_{1i} t_j + \varepsilon_{ij}$$ $$\kappa(X_i, t_j, S_i) = k_{X_i}^{(1)} \hat{\varsigma} + k_{X_i}^{(2)} \hat{\beta}_2(t_j - S_i)$$ ► Expected for observed outcomes under MAR - ○ · Expected for missing outcomes under MAR - ○ · Expected for missing outcomes under MNAR ## Sensitivity analysis for β_3 : Some results | $k_{X_i}^{(1)}$ | $k_{X_i}^{(2)}$ | \hat{eta}_3 | 95% CI | <i>p</i> -value | |---|---|---|---|---| | _ | _ | -0.031 | [-0.041, -0.021] | < 0.001 | | -0.5
-1 | 0.5
1 | -0.025
-0.017 | [-0.037, -0.013]
[-0.030, -0.003] | <0.001
0.019 | | $(-1)^{1-X_i} * 0.1$
$(-1)^{1-X_i} * 0.1$ | 0.5
1 | $-0.016 \\ -0.012$ | [-0.028, -0.004]
[-0.024, 0.000] | 0.004
0.040 | | -0.1
-0.25 | $(-1)^{X_i} * 0.25$
$(-1)^{X_i} * 0.25$ | -0.014 -0.010 | [-0.026, -0.002]
[-0.024, 0.004] | 0.027
0.151 | | $(-1)^{1-X_i} * 0.05$
$(-1)^{1-X_i} * 0.1$ | $(-1)^{X_i} * 0.05 (-1)^{X_i} * 0.1$ | -0.019 -0.011 | [-0.031, -0.007]
[-0.022, 0.001] | 0.001
0.066 | | | $ \begin{array}{c} -0.5 \\ -1 \\ (-1)^{1-X_i} * 0.1 \\ (-1)^{1-X_i} * 0.1 \\ -0.1 \\ -0.25 \\ (-1)^{1-X_i} * 0.05 \end{array} $ | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | For the WASO score, there is evidence of a treatment effect under this definition too under MAR and across a large range of scenarios departing from this assumption. ### **Concluding remarks** - Advantages over some previous approaches (e.g. Daniels and Hogan 2000, Ratitch et al. 2013): - Suitable for studies with large # of measurements or where planned timing and # of measurements differ across subjects. - Can be used with intermittent missingness - Sensitivity parameters with intuitive interpretations (e.g. intercepts, time-slopes) facilitating the formulation of assumptions. ### **Concluding remarks** - Advantages over some previous approaches (e.g. Daniels and Hogan 2000, Ratitch et al. 2013): - Suitable for studies with large # of measurements or where planned timing and # of measurements differ across subjects. - Can be used with intermittent missingness - Sensitivity parameters with intuitive interpretations (e.g. intercepts, time-slopes) facilitating the formulation of assumptions. - How to summarize results? (Molenberghs et al. 2001, Vansteelandt et al. 2006) Ignorance interval = Parameter regions yielded by these approaches e.g. for WASO score, $\hat{\theta} \in [-25, -5]$ Uncertainty interval = Ignorance interval + Confidence interval = Uncertainty due to finite sampling + missing data e.g. for WASO score, $\hat{\theta} \in [-25 \delta_l, -5 + \delta_u]$ ### **Concluding remarks** - Advantages over some previous approaches (e.g. Daniels and Hogan 2000, Ratitch et al. 2013): - Suitable for studies with large # of measurements or where planned timing and # of measurements differ across subjects. - Can be used with intermittent missingness - Sensitivity parameters with intuitive interpretations (e.g. intercepts, time-slopes) facilitating the formulation of assumptions. - How to summarize results? (Molenberghs et al. 2001, Vansteelandt et al. 2006) Ignorance interval = Parameter regions yielded by these approaches e.g. for WASO score, $\hat{\theta} \in [-25, -5]$ Uncertainty interval = Ignorance interval + Confidence interval = Uncertainty due to finite sampling + missing data e.g. for WASO score, $\hat{\theta} \in [-25 \delta_l, -5 + \delta_u]$ - Other issues: non-continuous outcomes, more than one incomplete longitudinal variable, elicit expert opinions.. #### Backup ■ When modeling longitudinal data with drop-outs, we need to consider the joint distribution of $\mathbf{Y}_i = (\mathbf{Y}_i^{\mathcal{O}}, \mathbf{Y}_i^{\mathcal{M}})$ and $U_i =$ occasion of the first missing outcome: $$f(\mathbf{y}^{\mathcal{O}},\mathbf{y}^{\mathcal{M}},u|oldsymbol{arphi})$$ ■ When modeling longitudinal data with drop-outs, we need to consider the joint distribution of $\mathbf{Y}_i = (\mathbf{Y}_i^{\mathcal{O}}, \mathbf{Y}_i^{\mathcal{M}})$ and $U_i =$ occasion of the first missing outcome: $$f(\mathbf{y}^{\mathcal{O}}, \mathbf{y}^{\mathcal{M}}, u | \varphi) = \underbrace{f(\mathbf{y}^{\mathcal{M}} | \mathbf{y}^{\mathcal{O}}, u, \varphi)}_{\mathsf{Extrapolation}} \times \underbrace{f(\mathbf{y}^{\mathcal{O}}, u | \varphi)}_{\mathsf{Observed}}$$ ■ When modeling longitudinal data with drop-outs, we need to consider the joint distribution of $\mathbf{Y}_i = (\mathbf{Y}_i^{\mathcal{O}}, \mathbf{Y}_i^{\mathcal{M}})$ and $U_i =$ occasion of the first missing outcome: $$f(\mathbf{y}^{\mathcal{O}}, \mathbf{y}^{\mathcal{M}}, u | \varphi) = \underbrace{f(\mathbf{y}^{\mathcal{M}} | \mathbf{y}^{\mathcal{O}}, u, \varphi)}_{\mathsf{Extrapolation}} \times \underbrace{f(\mathbf{y}^{\mathcal{O}}, u | \varphi)}_{\mathsf{Observed}}$$ ■ Aim of a sensitivity analysis: To assess the sensitivity of inferences about the target parameter $\theta = h(\varphi)$ to assumptions about the extrapolation model, which are unverifiable. • When modeling longitudinal data with drop-outs, we need to consider the joint distribution of $\mathbf{Y}_i = (\mathbf{Y}_i^{\mathcal{O}}, \mathbf{Y}_i^{\mathcal{M}})$ and $U_i =$ occasion of the first missing outcome: $$f(\mathbf{y}^{\mathcal{O}}, \mathbf{y}^{\mathcal{M}}, u | \varphi) = \underbrace{f(\mathbf{y}^{\mathcal{M}} | \mathbf{y}^{\mathcal{O}}, u, \varphi)}_{\mathsf{Extrapolation}} \times \underbrace{f(\mathbf{y}^{\mathcal{O}}, u | \varphi)}_{\mathsf{Observed}}$$ - Aim of a sensitivity analysis: To assess the sensitivity of inferences about the target parameter $\theta = h(\varphi)$ to assumptions about the extrapolation model, which are unverifiable. - A structured and focused approach: (Little 1994, Schaferstein et al. 1999, Daniels and Hogan 2000, Molenberghs et al. 2001,...) - Primary analysis: e.g. MAR model. - Secondary analyses: Consider a large family of MNAR models indexed by a parameter quantifying the distance from the primary model. **Pattern-mixture models (PMMs)** assume a different response mechanism per drop-out occasion and require making explicit assumptions about the extrapolation model: $$f(\mathbf{y}^{\mathcal{O}}, \mathbf{y}^{\mathcal{M}}, u | \varphi) = f(\mathbf{y}^{\mathcal{O}}, \mathbf{y}^{\mathcal{M}} | u, \varphi) \times f(u | \varphi)$$ **Pattern-mixture models (PMMs)** assume a different response mechanism per drop-out occasion and require making explicit assumptions about the extrapolation model: $$\begin{array}{lcl} f(\mathbf{y}^{\mathcal{O}}, \mathbf{y}^{\mathcal{M}}, u | \varphi) & = & f(\mathbf{y}^{\mathcal{O}}, \mathbf{y}^{\mathcal{M}} | u, \varphi) \times f(u | \varphi) \\ & = & \underbrace{f(\mathbf{y}^{\mathcal{M}} | \mathbf{y}^{\mathcal{O}}, u, \varphi)}_{\text{Extrapolation}} \times \underbrace{f(\mathbf{y}^{\mathcal{O}} | u, \varphi) \times f(u | \varphi)}_{\text{Observed}} \end{array}$$ **Pattern-mixture models (PMMs)** assume a different response mechanism per drop-out occasion and require making explicit assumptions about the extrapolation model: $$\begin{array}{lcl} f(\mathbf{y}^{\mathcal{O}}, \mathbf{y}^{\mathcal{M}}, u | \varphi) & = & f(\mathbf{y}^{\mathcal{O}}, \mathbf{y}^{\mathcal{M}} | u, \varphi) \times f(u | \varphi) \\ & = & \underbrace{f(\mathbf{y}^{\mathcal{M}} | \mathbf{y}^{\mathcal{O}}, u, \varphi)}_{\text{Extrapolation}} \times \underbrace{f(\mathbf{y}^{\mathcal{O}} | u, \varphi) \times f(u | \varphi)}_{\text{Observed}} \\ & & \underbrace{(\phi, \kappa)} & \phi \end{array}$$ PMMs can be parametrized such that $\varphi = (\phi, \kappa)$; ϕ is identifiable but κ is not. **Pattern-mixture models (PMMs)** assume a different response mechanism per drop-out occasion and require making explicit assumptions about the extrapolation model: $$\begin{array}{lcl} f(\mathbf{y}^{\mathcal{O}}, \mathbf{y}^{\mathcal{M}}, u | \varphi) & = & f(\mathbf{y}^{\mathcal{O}}, \mathbf{y}^{\mathcal{M}} | u, \varphi) \times f(u | \varphi) \\ & = & \underbrace{f(\mathbf{y}^{\mathcal{M}} | \mathbf{y}^{\mathcal{O}}, u, \varphi)}_{\text{Extrapolation}} \times \underbrace{f(\mathbf{y}^{\mathcal{O}} | u, \varphi) \times f(u | \varphi)}_{\text{Observed}} \\ & & \underbrace{(\phi, \kappa)} & \phi \end{array}$$ PMMs can be parametrized such that $\varphi = (\phi, \kappa)$; ϕ is identifiable but κ is not. Different values of κ yield same fit to the observed data ...but also imply different extrapolation models and different inferences on θ . Pattern-mixture models (PMMs) assume a different response mechanism per drop-out occasion and require making explicit assumptions about the extrapolation model: $$\begin{array}{lcl} f(\mathbf{y}^{\mathcal{O}}, \mathbf{y}^{\mathcal{M}}, u | \varphi) & = & f(\mathbf{y}^{\mathcal{O}}, \mathbf{y}^{\mathcal{M}} | u, \varphi) \times f(u | \varphi) \\ & = & \underbrace{f(\mathbf{y}^{\mathcal{M}} | \mathbf{y}^{\mathcal{O}}, u, \varphi)}_{\text{Extrapolation}} \times \underbrace{f(\mathbf{y}^{\mathcal{O}} | u, \varphi) \times f(u | \varphi)}_{\text{Observed}} \\ & & \underbrace{(\phi, \kappa)} & \phi \end{array}$$ PMMs can be parametrized such that $\varphi = (\phi, \kappa)$; ϕ is identifiable but κ is not. Different values of κ yield same fit to the observed data ...but also imply different extrapolation models and different inferences on θ . κ is called a **sensitivity parameter** because it "embodies" the source of the sensitivity of inferences to different unverifiable assumptions about the extrapolation model. (Daniels and Wang 2009, Hogan 2009) # Sensitivity analysis for θ Scenario $k_0 = k_1 = k$