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Longitudinal data with drop-outs
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The SMI study

(sleep-maintenance insomnia)

m n =962 patients randomized
to placebo (X; = 0) or
treatment (X; = 1).

m Scores measuring quality of

sleep collected through 6
periods.

m Goal: Inference about the
treatment effect

Wake-time after sleep onset (min)

0 =E(Yis — YiolX; = 1)
— E(Yis — YiolX; =0)

Baseline 1 2

m 22% dropped-out Vi;it

Reasons for drop-outs: side-effects, lack of efficacy, protocol violation...
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Consequences of missing outcomes

‘Loss of precision + Need assumptions about missingness

Rubin’s taxonomy (rubin 1976)

m MAR if missingness probability is conditionally independent of missing outcome
given covariates and observed outcomes.

e Missing and observed data can be assumed to share conditional distribution.
e No further assumptions needed to draw valid inferences from available data.

m MNAR otherwise.

e Conditional distributions of observed and missing data differ.
e Need to make further assumptions to address the identifiability issues.

But not possible to assess from data whether MAR or MNAR (Molenberghs et al. 2008).

= Sensitivity Analyses



Snapshot of incomplete longitudinal data literature

m Covariate-dependent drop-out: CC
m MAR: Direct likelihood, WGEE, MI, MI-GEE, Doubly-robust estimators...

m MNAR: Selection models, pattern-mixture models, shared-parameter
models (‘joint models’)

m Sensitivity analyses:

e Global and local influence diagnostics from a single model.

o Consider a finite set of models with different structural and/or
distributional assumptions.

e Consider a family of MNAR models indexed by a parameter quantifying
the distance from MAR.
(Little 1994, Schaferstein et al. 1999, Daniels and Hogan 2000, Molenberghs et al. 2001,...)

e Sensitivity parameter approach (Daniels and Wang 2009, Hogan 2009)
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A family of PMMs for longitudinal data

A family of Linear mixed models (LMM) that assumes different trajectories for the
observed (R;j = 0) and missing (Rj = 1) outcomes:

Yj =X;B+Zjbi + kRj+ 5, g5~ N(0,07), b; ~ N(0,G)

The distribution of the missing outcomes is identified up to the sensitivity parameter
which quantifies:

m Degree of departure from MAR, which is equivalent to k = 0 (‘centered’ at MAR).

m Shift in the expected trajectory of missing outcomes wrt observed outcomes.

Varying k over a set of plausible values enables assessment of sensitivity.

Allowing k = k(X;;) we can model key characteristics of the missing outcome
distribution that may affect inferences about the parameter of interest.



A picture is worth 1000 words...

SMI example: Expected trajectories for a patient in the treatment group
who dropped-out after visit 2.
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Practical implementation

To obtain estimates of marginal parameters, a practical and unified approach is MI.
Step 1 Fit the LMM to the available data to obtain 3, var(8), b;, var(b;), 2.

Step 2 Impute the missing outcomes m times by drawing values from the LMM
using these estimates and the chosen x(Xj;). This yields m completed
datasets.

Step 3 Estimate the marginal parameter of interest 6 and its variance from
each completed dataset by using a complete data method.

Step 4 Use Rubin’s formulas to combine estimates into a single inference.

MI-based implementation makes it easy to do several analyses over a range of K(Xj).



Step 2: Imputation procedure for longitudinal data

Imputation procedure for / € {1,..., m}:
(a) Draw B ~ N(B,v’ér,@) and b,(-I) ~ N(IAJ,-,vérIA),-) fori=1,...,n.

(b) Draw o2) ~ 42 x (Xi
d = n — g = residual dz.grees of freedom
n1 = number of observations to fit the model
q = trace of ‘hat matrix’ (estimate of effective # of parameters)

(Bates, 2006)

(c) Draw al(-jl) ~ N(0,52().

(d) Impute each missing outcome Yj; as

X80 + Zb" + k(Xy) + ).

This procedure can be used for MAR analyses taking & = 0. Currently studying
its use to impute time-dependent covariates for the Cox model.



Simulation study

Aim: To assess the approach in the realistic situation where the family of
PMMs does not include the true MNAR model that generated the data.

m Design mimicked the 2-arm, 6-visit design of the SMI study, with outcomes

generated from:
Yij = jBXi + boi + jb1i + €

m MNAR drop-outs were generated under a selection model.

m Target parameter # = Expected difference in outcomes at last visit.
Yis = 6o + 60X + ¢;

m A family of PMMs indexed by arm-specific sensitivity parameters kg, k.

o 'Best MNAR' model: ko and k; for which PMM= true model.
e Increasing departures from true model: by taking ko and k; as
reference.



Simulation study: Some results for / =1

m Drop-out probability lower for subjects with lower outcomes.

Analysis ko ki % bias
MAR 0 0 6.9
MNAR1 ko/2 k2 2.6
Best MNAR ko ki 1.5
MNAR?2 2ky 2k 10.0
MNAR3 ko/2 2k 88.3
MNAR4 2ky ky/2  -805
cC - - -35.6

m Drop-out probability lower for subjects with lower outcomes
& global drop-out probability higher in treatment group.

Analysis ko ki % bias
MAR 0 0 417
MNAR1 ko/2  ki/2  -208
Best MNAR ko ke 1.9
MNAR?2 2ko 2k 44.0
MNAR3 ko/2 2k 73.6
MNARA4 2k ki/2  -49.4

CC - - -165.0




Simulation study: Results summary

® When PMM = true model: Satisfactory CPs and type | error rates.

® When departing from the true model: We observed the variation in the expected
value of the coefficient estimator, which depended on the missingness mechanism
and other factors. The approach is thus suitable for assessing sensitivity.

m Moderate upward bias in Rubin’s variance estimator (|[MRB| < 10%) resulted in
conservative (yet acceptable) CPs. A consequence of misspecification and
uncongeniality.
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Application to the SMI study

‘ To assess the evidence of a treatment effect: 8 = E(Yjs—Yio|Xi =1)—E(Yis—Yio|Xi=0) ‘

m Primary analysis: MAR-based MI.

Yii = Bo + B1Xi + Batj + B3Xitj + boi + bty + €

0 95% ClI p-value
WASO  —1431 [=20.30, —8.23] _<0.001
SLREF —0.09 [ —0.17, —0.01] 0.03

WASO=Wake-time after sleep onset (minutes)
SLREF=Sleep refreshing quality (1=excellent to 4=poor)
Means of daily measures over 2/3-week periods; decrease in either is sign of improvement

m Secondary analyses: Control of group-specific intercepts of the missing
data distribution.

Yij = Bo + B1Xi + Batj + B3 Xitj + kxS R + boi + biitj + €

ko, ki since X; =0 or 1.
¢ = sample SD of scores at visit 5.
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Sensitivity analysis for 6
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For the WASO score, there is strong evidence of a treatment effect in most
scenarios. For the SLREF score, the evidence is fragile and strongly dependent on
missingness assumptions.
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0=E(Yis—Yio|Xi=1)—E(Yis— Yio|Xi=0)
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In practice, the plausibility of the scenarios studied needs to be assessed.
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Sensitivity analysis for J;=difference in time-slopes

Control group-specific intercepts and time-slopes of missing data distribution.

Yij = Bo + BiXi + Batj + B3 Xitj + (X, tj, Si)Ryj + boi + buitj + €

K(Xi, £, Si) = kS + kS Ba(t; — )
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Sensitivity analysis for s:

Some results

Scenario k;é) k)(é) B3 95% Cl p-value
MAR — — —0.031 [-0.041,-0.021] <0.001
Modified ~ —0.5 0.5 —0.025 [-0.037,-0.013]  <0.001
slopes & -1 1 —0.017  [-0.030, -0.003] 0.019
intercepts
(-1)**% %01 05 —0.016  [-0.028, -0.004] 0.004
(=1)% x0.1 1 —0.012  [-0.024, 0.000] 0.040
—0.1 (=1)% x0.25 —0.014 [-0.026, -0.002] 0.027
—0.25 (=1)% x0.25 —0.010 [-0.024, 0.004] 0.151
(=1)'=% x0.05 (—1)%%0.05 —0.019 [-0.031, -0.007] 0.001
(=1)'=% %01  (-1)%%01  —0.011 [-0.022, 0.001] 0.066

For the WASO score, there is evidence of a treatment effect under this definition too

under MAR and across a large range of scenarios departing from this assumption.
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Concluding remarks

m Advantages over some previous approaches (e.g. Daniels and Hogan 2000, Ratitch et al. 2013):

e Suitable for studies with large # of measurements or where planned timing
and # of measurements differ across subjects.

e Can be used with intermittent missingness

e Sensitivity parameters with intuitive interpretations (e.g. intercepts,
time-slopes) facilitating the formulation of assumptions.
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Concluding remarks

m Advantages over some previous approaches (e.g. Daniels and Hogan 2000, Ratitch et al. 2013):

e Suitable for studies with large # of measurements or where planned timing
and # of measurements differ across subjects.

e Can be used with intermittent missingness

e Sensitivity parameters with intuitive interpretations (e.g. intercepts,
time-slopes) facilitating the formulation of assumptions.

m How to summarize results? (Molenberghs et al. 2001, Vansteelandt et al. 2006)
Ignorance interval = Parameter regions yielded by these approaches
e.g. for WASO score, § € [—25, —5]
Uncertainty interval = Ignorance interval + Confidence interval
= Uncertainty due to finite sampling + missing data
e.g. for WASO score, 6 € [-25 — §;, =5 + 6,]

m Other issues: non-continuous outcomes, more than one incomplete longitudinal
variable, elicit expert opinions..
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Backup

18



Longitudinal data and sensitivity analyses

® When modeling longitudinal data with drop-outs, we need to consider the joint
distribution of Y; = (Y,-O,Y,-M) and U; = occasion of the first missing outcome:

fFiy®, vy, ulp)
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Longitudinal data and sensitivity analyses

® When modeling longitudinal data with drop-outs, we need to consider the joint
distribution of Y; = (Y,-O,Y,-M) and U; = occasion of the first missing outcome:

Fy? vy ule) = ™Iy u0) x F(y7, ule)
—_—— ———
Extrapolation Observed

m Aim of a sensitivity analysis: To assess the sensitivity of inferences about the
target parameter @ = h(¢p) to assumptions about the extrapolation model, which
are unverifiable.

m A structured and focused approach:
(Little 1994, Schaferstein et al. 1999, Daniels and Hogan 2000, Molenberghs et al. 2001,...)

e Primary analysis: e.g. MAR model.
e Secondary analyses: Consider a large family of MNAR models indexed by a
parameter quantifying the distance from the primary model.
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The sensitivity parameter approach

Pattern-mixture models (PMMs) assume a different response mechanism per drop-out
occasion and require making explicit assumptions about the extrapolation model:

fFiyO .y ule) = ¥,y u @) x f(ulp)
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The sensitivity parameter approach

Pattern-mixture models (PMMs) assume a different response mechanism per drop-out

occasion and require making explicit assumptions about the extrapolation model:

fFiyO .y ule) = ¥,y u @) x f(ulp)
= FyMy?, u, @) x F(y°|u, @) x f(ulep)
Extrapolation Observed

(¢, %) ¢

PMMs can be parametrized such that ¢ = (¢, k); ¢ is identifiable but & is not.

Different values of k yield same fit to the observed data
...but also imply different extrapolation models and different inferences on 6.

K is called a sensitivity parameter because it “embodies” the source of the sensitivity
of inferences to different unverifiable assumptions about the extrapolation model.
(Daniels and Wang 2009, Hogan 2009)
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Sensitivity analysis for 6

Scenario kg = k1 = k

WASO

-10

Treatment effect
-20
1

-30
I

-40
I

0 € [—25,—9] minutes

Treatment effect

-0.2

0.0 0.1

-0.1

SLREF

0 € [-0.14,—0.01] points
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