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Motivation

Two popular missing data analysis methods, treated as distinct in
the literature:

e Maximum likelihood estimation (MLE)

> via expectation-maximisation (EM) algorithm, proposed by
Dempster et al. in late 1970's

> via stochastic versions of EM, developed in mid 1980's and
early 1990's

e Multiple imputation (MI)
> proposed by Rubin in late 1970's

However, close relationship between MLE and Ml

= A type of Ml is exactly MLE!



Motivation (II)

Aim is to explore ideas from ML literature that can be applied to
Ml in order to, for example,

e choose variables to be included in the imputation model
e gain insight into consequences of misspecification
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Missing data problem

e Notation
» observed data y

» missing data z

» parameters of model 0

e Observed likelihood

ply | 0) = / ply.z | 8)dz
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Multiple imputation

What does MI do?

e impute missing data M > 2 times, creating M completed
datasets

e analyse each M completed datasets separately

e combine the results together over M completed datasets
(Rubin, 1987)



Multiple imputation (I1)

How does MI impute missing data?

1. assumes a complete-data model p(y, z | 0)

2. imputes missing data from imputation model p(z | y, ) to
complete dataset

3. estimates # from the completed dataset
4. repeats steps 2-3 M times

5. combines the results



Multiple imputation (I11)

Most commonly in a Bayesian manner (Tanner and Wong, 1987):

e approximation to the observed posterior

pw\y)z/ p(0 | v, 2)p(z | y)dz
1 Y ,
SM;p(G y,zU))

e in an iterative manner in two steps

> |-step: imputation of missing data by randomly drawing from
imputation model

» P-step: re-estimation of parameters by randomly drawing from
their postrior distribution given the completed data
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MLE via EM algorithm

Finds MLE of parameters of observed likelihood in the presence of
missing data by making use of an associated complete-data
likelihood; EM iteration () — 9(t+1) consists of two steps:

e E-step

QO] 61)) = / l0g [p(y.z | )] plz | y.0D)dz

o M-step
00+ = argmax Q(6 | 61))



Stochastic versions of EM

Approximate Q(# | #()) using Monte Carlo integration:

e E-step — |-step:
impute missing data from imputation model

ZU) ~ p(z | y,G(t)), j=1..,M

to approximate Q(0 | 6(t)) as

M
Q6 16) Z log p(y, 2 | 6(1))
Jj=1



Stochastic versions of EM (l1)

A popular stochastic version of EM

e stochastic EM (StEM; Celeux and Diebolt 1985):
set M =1 and iterate until convergence to stationary
distribution W(A) at t =T

~

b =E(v()

li argmax (Iogp y,zY) | H(TH)))

3

° {G(t)} by StEM algorithm does not converge pointwise to 6
but in distribution (Biscarat et al., 1992)

e StEM estimator unbiased and consistent estimator of MLE of
0 (Diebolt and Ip, 1995)
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StEM vs M|

e Artificial distinction between M| and StEM

= A type of Ml is equivalent to StEM

StEM:

wnh=o

4.

Fix 0©) in ©

2D~ p(z |y, 000))

0(t+1) = argmax p(y, z(ttD) | 9(1))
Repeat 1-2 until convergence
Combine results of next M

iterations

MI (" proper"):

0.
1.
2.
3.

4.

Fix 89 in ©

2~ p(z |y, 60)

p(t+1) P(9 | }/az(t+1))
Repeat 1-2 until convergence
Combine results of next M

iterations



StEM vs Ml (11)

StEM  or  MI ("improper"):

PO

Fix 6©) in ©

2D« p(z | y, 000

0(t+1) = argmax p(y, z(t+1) | 9(1))
Repeat 1-2 until convergence
Combine results of next M iterations
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Methods for imputation model selection

e In MI literature, no standard tool to choose which auxiliary
variables to be included in the imputation model

e Available model selection criteria in the ML literature

» Akaike information criterion (AIC)
AIC = —2log p(y | 0) + 2d
with d denoting number of parameters
» Bayesian information criterion (BIC)

BIC = —2log p(y | 0) + log(n) x d

» Other methods specifically developed for missing data problems
such as Complete AIC (AlCcd) and Mixed AIC (AICmix)



Methods for imputation model selection (II)

Why likelihood can distinguish between imputation models?
— incorrect imputation model can be understood as a variational
approximation to observed log-likelihood:

e Let g(z) be the specified imputation model, then
og p(y | 6) = log ply | 6) [ a()dz = [ a(z)logly | 6)dz
B p(y;z|0)
= [ateres (5275 ) ¢
= Q0 107) ~ [ a(z)logp(z | y.0)dz

e When q(z) # p(z | y,0)

log pg(y | 0) = log p(y | 8) — KL(ql|p)
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Simulation study

Interested in a response variable Y, which is a function of a
predictor X1

X1 partially observed

e Two imputation models (linear regressions):

» True model: an auxiliary variable X2, together with Y, to
impute missing values, where X1 and X2 are correlated

» Wrong model: an auxiliary variable X3, together with Y/, to
impute missing values, where X3 is independent from X1 and

Y
e Y and X2 conditionally independent given X1
e Complete data (Y, X1, X2, X3) ~ Na(u,X)



Simulation result

e Medium correlation (0.5) between X1 and X2

X1 60% missing below a limit of detection

Sample size n varies between n = 50, 100, 1000

Results averaged over 200 simulated datasets

True/Wrong  (n=50) (n=100) (n=1000)

AIC 0.80 0.83 1.00
BIC 0.80 0.83 1.00
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Efficiency gain?
By imputation of missing data more than once in the |-step

e Monte Carlo EM (MCEM; Wei and Tanner 1990):
set M > 2 and iterate until convergenceto @ at t =T

0 = argmax (Q(G 1 6(T)y | z(l),...,z(M)>

M
1 .
_ ) | (M)
= argmax -, E 1 (Iog p(y,zY |0 ))
J:

o MCEM more efficient than StEM

» for finite sample size

» for finite number of imputations (Nielsen, 2000)

— StEM loses efficiecy due to maximise-then-average
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Conclusion

e A type of Ml can be understood as a stochastic version of EM
which is an approximation to MLE

e Access to standard likelihood machinery can improve Ml's
performance:

» standard ICs for imputation model selection

» methods developed for assessment of imputation model
misspecification

» efficieny gain
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Asymptotic variance

Let W(A) and B(f) denote within- and between-imputation variance of
0, respectively, and / the identity matrix:

e stochastic EM (Louis 1982, Diebolt and Ip 1995, Wang and
Robins 1998, von Hippel 2012; "Louis method")

>ply,z |0 op(y,z |0
éaan ) ‘y] _'COW’[ : a9 = ‘y]

= W) [1 - w@)B@)|

Vér(é\StEM) = Eg I:

e MI (Rubin 1987; "Rubin’s rules”)

A~

var(Om) = W() + B(d)
[ (w( +Bé)15@ﬂ



