Multiple imputation as a type of stochastic EM approximation to maximum likelihood

Firouzeh Noghrehchi Prof. David Warton, Dr. Jakub Stoklosa School of Mathematics and Statistics, The University of New South Wales, Sydney, Australia.

KORK STRAIN A BAR SHOP

- *•* Motivation
- *•* Missing data analysis methods
	- *•* Multiple imputation (MI)
	- *•* MLE via stochastic EM
- *•* MI as stochastic EM
- *•* Gains of equivalence
	- *•* Methods for imputation model selection

- *•* Simulation study
- Efficiency
- *•* Conclusion

• Motivation

- *•* Missing data analysis methods
	- *•* Multiple imputation (MI)
	- *•* MLE via stochastic EM
- *•* MI as stochastic EM
- *•* Gains of equivalence
	- *•* Methods for imputation model selection

- *•* Simulation study
- Efficiency
- *•* Conclusion

Motivation

Two popular missing data analysis methods, treated as distinct in the literature:

- *•* Maximum likelihood estimation (MLE)
	- \triangleright via expectation-maximisation (EM) algorithm, proposed by Dempster et al. in late 1970's
	- \triangleright via stochastic versions of EM, developed in mid 1980's and early 1990's

KORK ERKER ADE YOUR

- *•* Multiple imputation (MI)
	- \triangleright proposed by Rubin in late 1970's

However, close relationship between MLE and MI

 \implies A type of MI is exactly MLE!

Aim is to explore ideas from ML literature that can be applied to MI in order to, for example,

• choose variables to be included in the imputation model

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

• gain insight into consequences of misspecification

• ...

- *•* Motivation
- *•* Missing data analysis methods
	- *•* Multiple imputation (MI)
	- *•* MLE via stochastic EM
- *•* MI as stochastic EM
- *•* Gains of equivalence
	- *•* Methods for imputation model selection

- *•* Simulation study
- Efficiency
- *•* Conclusion

Missing data problem

- *•* Notation
	- ▶ observed data *y*
	- ► missing data z
	- ► parameters of model θ
- *•* Observed likelihood

$$
p(y | \theta) = \int p(y, z | \theta) dz
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

- *•* Motivation
- *•* Missing data analysis methods
	- *•* Multiple imputation (MI)
	- *•* MLE via stochastic EM
- *•* MI as stochastic EM
- *•* Gains of equivalence
	- *•* Methods for imputation model selection

- *•* Simulation study
- Efficiency
- *•* Conclusion

What does MI do?

- *•* impute missing data *M* 2 times, creating *M* completed datasets
- *•* analyse each *M* completed datasets separately
- *•* combine the results together over *M* completed datasets (Rubin, 1987)

K ロ ▶ K @ ▶ K 할 X X 할 X 및 할 X X Q Q O

Multiple imputation (II)

How does MI impute missing data?

- 1. assumes a complete-data model $p(y, z | \theta)$
- 2. imputes missing data from imputation model $p(z | y, \theta)$ to complete dataset

K ロ ▶ K @ ▶ K 할 X X 할 X 및 할 X X Q Q O

- 3. estimates θ from the completed dataset
- 4. repeats steps 2-3 *M* times
- 5. combines the results

Multiple imputation (III)

Most commonly in a Bayesian manner (Tanner and Wong, 1987):

• approximation to the observed posterior

$$
p(\theta | y) = \int p(\theta | y, z) p(z | y) dz
$$

$$
\simeq \frac{1}{M} \sum_{j=1}^{M} p(\theta | y, z^{(j)})
$$

- *•* in an iterative manner in two steps
	- \blacktriangleright I-step: imputation of missing data by randomly drawing from imputation model
	- \triangleright P-step: re-estimation of parameters by randomly drawing from their postrior distribution given the completed data

- *•* Motivation
- *•* Missing data analysis methods
	- *•* Multiple imputation (MI)
	- *•* MLE via stochastic EM
- *•* MI as stochastic EM
- *•* Gains of equivalence
	- *•* Methods for imputation model selection

- *•* Simulation study
- Efficiency
- *•* Conclusion

MLE via EM algorithm

Finds MLE of parameters of observed likelihood in the presence of missing data by making use of an associated complete-data likelihood: EM iteration $\theta^{(t)} \rightarrow \theta^{(t+1)}$ consists of two steps:

• E-step

$$
Q(\theta | \theta^{(t)}) = \int \log [p(y, z | \theta)] p(z | y, \theta^{(t)}) dz
$$

• M-step

 $\theta^{(t+1)} = \text{argmax} \ Q(\theta \mid \theta^{(t)})$

KORK ERKER ADE YOUR

Stochastic versions of EM

Approximate $Q(\theta | \theta^{(t)})$ using Monte Carlo integration:

• E-step \rightarrow I-step: impute missing data from imputation model

$$
z^{(j)} \sim p(z \mid y, \theta^{(t)}), \ \ j=1,...,M
$$

to approximate $Q(\theta | \theta^{(t)})$ as

$$
Q(\theta \mid \theta^{(t)}) \simeq \frac{1}{M} \sum_{j=1}^{M} \log p(y, z^{(j)} \mid \theta^{(t)})
$$

K ロ ▶ K @ ▶ K 할 X X 할 X 및 할 X X Q Q O

Stochastic versions of EM (II)

A popular stochastic version of EM

• stochastic EM (StEM; Celeux and Diebolt 1985): set $M = 1$ and iterate until convergence to stationary distribution $\Psi(\hat{\theta})$ at $t=$ $\mathcal{T}% _{T}=\mathcal{Y}_{T}$

$$
\hat{\theta} = E(\Psi(\hat{\theta}))
$$

= $\frac{1}{m} \sum_{j=1}^{m} argmax \left(log p(y, z^{(j)} | \theta^{(T+j)}) \right)$

- $\{\theta^{(t)}\}$ by StEM algorithm does not converge pointwise to $\hat{\theta}$ but in distribution (Biscarat et al., 1992)
- *•* StEM estimator unbiased and consistent estimator of MLE of θ (Diebolt and Ip, 1995)

4 D > 4 P + 4 B + 4 B + B + 9 Q O

- *•* Motivation
- *•* Missing data analysis methods
	- *•* Multiple imputation (MI)
	- *•* MLE via stochastic EM
- *•* MI as stochastic EM
- *•* Gains of equivalence
	- *•* Methods for imputation model selection

- *•* Simulation study
- Efficiency
- *•* Conclusion

StEM vs MI

• Artificial distinction between MI and StEM \implies A type of MI is equivalent to StEM

StEM: MI ("*proper*"):

0. Fix $\theta^{(0)}$ in Θ 1. $z^{(t+1)} \sim p(z \mid y, \theta^{(t)})$ 2. $\theta^{(t+1)} = \text{argmax} \ p(y, z^{(t+1)} | \theta^{(t)})$ 2. $\theta^{(t+1)} \sim p(\theta | y, z^{(t+1)})$ 3. Repeat 1-2 until convergence 4. Combine results of next *M* iterations 0. Fix $\theta^{(0)}$ in Θ 1. $z^{(t+1)} \sim p(z \mid y, \theta^{(t)})$ 3. Repeat 1-2 until convergence 4. Combine results of next *M* iterations

KORK ERKER ADE YOUR

StEM vs MI (II)

StEM or MI ("*improper*"):

- 0. Fix $\theta^{(0)}$ in Θ 1. $z^{(t+1)} \sim p(z \mid y, \theta^{(t)})$ 2. $\theta^{(t+1)} = \text{argmax } p(y, z^{(t+1)} | \theta^{(t)})$ 3. Repeat 1-2 until convergence
- 4. Combine results of next *M* iterations

KORK ERKER ADE YOUR

- *•* Motivation
- *•* Missing data analysis methods
	- *•* Multiple imputation (MI)
	- *•* MLE via stochastic EM
- *•* MI as stochastic EM
- *•* Gains of equivalence
	- *•* Methods for imputation model selection

- *•* Simulation study
- Efficiency
- *•* Conclusion

- *•* Motivation
- *•* Missing data analysis methods
	- *•* Multiple imputation (MI)
	- *•* MLE via stochastic EM
- *•* MI as stochastic EM
- *•* Gains of equivalence
	- *•* Methods for imputation model selection

K ロ ▶ K @ ▶ K 할 X X 할 X 및 할 X X Q Q O

- *•* Simulation study
- Efficiency
- *•* Conclusion

Methods for imputation model selection

- In MI literature, no standard tool to choose which auxiliary variables to be included in the imputation model
- *•* Available model selection criteria in the ML literature
	- Akaike information criterion (AIC)

$$
AIC = -2\log p(y | \hat{\theta}) + 2d
$$

with *d* denoting number of parameters

 \triangleright Bayesian information criterion (BIC)

$$
BIC = -2\log p(y | \hat{\theta}) + \log(n) \times d
$$

 \triangleright Other methods specifically developed for missing data problems such as Complete AIC (AICcd) and Mixed AIC (AICmix)

4 D > 4 P + 4 B + 4 B + B + 9 Q O

Methods for imputation model selection (II)

Why likelihood can distinguish between imputation models? \rightarrow incorrect imputation model can be understood as a variational approximation to observed log-likelihood:

• Let *q*(*z*) be the specified imputation model, then

$$
\log p(y | \theta) = \log p(y | \theta) \int q(z) dz = \int q(z) \log p(y | \theta) dz
$$

$$
= \int q(z) \log \left(\frac{p(y, z | \theta)}{p(z | y, \theta)} \right) dz
$$

$$
= Q(\theta | \theta^{(T)}) - \int q(z) \log p(z | y, \theta) dz
$$

• When $q(z) \neq p(z | y, \theta)$

$$
\log p_q(y | \theta) = \log p(y | \theta) - KL(q||p)
$$

4 D > 4 P + 4 B + 4 B + B + 9 Q O

- *•* Motivation
- *•* Missing data analysis methods
	- *•* Multiple imputation (MI)
	- *•* MLE via stochastic EM
- *•* MI as stochastic EM
- *•* Gains of equivalence
	- *•* Methods for imputation model selection

- *•* Simulation study
- Efficiency
- *•* Conclusion

Simulation study

Interested in a response variable *Y* , which is a function of a predictor *X*1

- *• X*1 partially observed
- *•* Two imputation models (linear regressions):
	- \triangleright True model: an auxiliary variable $X2$, together with Y, to impute missing values, where *X*1 and *X*2 are correlated
	- ▶ Wrong model: an auxiliary variable X3, together with Y, to impute missing values, where *X*3 is independent from *X*1 and *Y*

4 D > 4 P + 4 B + 4 B + B + 9 Q O

- *• Y* and *X*2 conditionally independent given *X*1
- Complete data $(Y, X1, X2, X3) \sim N_4(\mu, \Sigma)$

Simulation result

- *•* Medium correlation (0.5) between *X*1 and *X*2
- *X*1 60% missing below a limit of detection
- Sample size *n* varies between $n = 50, 100, 1000$
- *•* Results averaged over 200 simulated datasets

K ロ ▶ K @ ▶ K 할 X X 할 X 및 할 X X Q Q O

- *•* Motivation
- *•* Missing data analysis methods
	- *•* Multiple imputation (MI)
	- *•* MLE via stochastic EM
- *•* MI as stochastic EM
- *•* Gains of equivalence
	- *•* Methods for imputation model selection

- *•* Simulation study
- Efficiency
- *•* Conclusion

Efficiency gain?

By imputation of missing data more than once in the I-step

• Monte Carlo EM (MCEM; Wei and Tanner 1990): set $M \geq 2$ and iterate until convergence to $\hat{\theta}$ at $t = T$

$$
\hat{\theta} = \underset{\theta}{\text{argmax}} \left(Q(\theta | \theta^{(T)}) | z^{(1)}, ..., z^{(M)} \right)
$$
\n
$$
= \underset{\text{argmax}}{\text{argmax}} \frac{1}{M} \sum_{j=1}^{M} \left(\log p(y, z^{(j)} | \theta^{(T)}) \right)
$$

- MCEM more efficient than StEM
	- \triangleright for finite sample size
	- \triangleright for finite number of imputations (Nielsen, 2000)
		- $-$ StEM loses efficiecy due to maximise-then-average

4 D > 4 P + 4 B + 4 B + B + 9 Q O

- *•* Motivation
- *•* Missing data analysis methods
	- *•* Multiple imputation (MI)
	- *•* MLE via stochastic EM
- *•* MI as stochastic EM
- *•* Gains of equivalence
	- *•* Methods for imputation model selection

- *•* Simulation study
- Efficiency
- *•* Conclusion

Conclusion

- *•* A type of MI can be understood as a stochastic version of EM which is an approximation to MLE
- *•* Access to standard likelihood machinery can improve MI's performance:
	- \triangleright standard ICs for imputation model selection
	- \triangleright methods developed for assessment of imputation model misspecification

KORK STRATER STRAKER

 \blacktriangleright efficieny gain

Reference

Celeux,G. and Diebolt, J. (1985). The SEM algorithm: a probabilistic teacher algorithm derived from the EM algorithm for the mixture problem. Comp.Statist.Quart.2, 73-82.

Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977). Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society. Series B (Methodological), 1-38.

Diebolt, J., and Ip, E. H. S. (1995). A stochastic EM algorithm for approximating the maximum likelihood estimate: Sandia National Labs., Livermore, CA (United States).

Nielsen, S. F. (2000). The stochastic EM algorithm: estimation and asymptotic results. Bernoulli, 457-489.

Rubin, D. B. (1987). Multiple imputation for nonresponse in surveys (Vol. 81): John Wiley and Sons.

Wei, G. C. G., and Tanner, M. A. (1990). A Monte Carlo implementation of the EM algorithm and the poor man's data augmentation algorithms. Journal of the American Statistical Association, 85(411), 699-704.

KORKAR KERKER EL VOLO

Asymptotic variance

Let $W(\hat{\theta})$ and $B(\hat{\theta})$ denote within- and between-imputation variance of $\hat{\theta}$, respectively, and I the identity matrix:

• stochastic EM (Louis 1982, Diebolt and Ip 1995, Wang and Robins 1998, von Hippel 2012; *"Louis method"*)

$$
\hat{\text{var}}(\hat{\theta}_{StEM}) = E_{\theta} \left[\frac{\partial^2 p(y, z | \theta)}{\partial \theta \partial \theta'} | y \right] - \text{cov}_{\theta} \left[\frac{\partial p(y, z | \theta)}{\partial \theta} | y \right]
$$

$$
= W(\hat{\theta}) \left[I - W(\hat{\theta})^{-1} B(\hat{\theta}) \right]^{-1}
$$

• MI (Rubin 1987; *"Rubin's rules"*)

$$
\begin{aligned} \n\hat{\text{var}}(\hat{\theta}_{MI}) &= W(\hat{\theta}) + B(\hat{\theta}) \\ \n&= W(\hat{\theta}) \left[I - \left(W(\hat{\theta}) + B(\hat{\theta}) \right)^{-1} B(\hat{\theta}) \right]^{-1} \n\end{aligned}
$$

KORKAR KERKER EL VOLO