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Motivation

Two popular missing data analysis methods, treated as distinct in
the literature:

• Maximum likelihood estimation (MLE)

. via expectation-maximisation (EM) algorithm, proposed by
Dempster et al. in late 1970’s

. via stochastic versions of EM, developed in mid 1980’s and
early 1990’s

• Multiple imputation (MI)
. proposed by Rubin in late 1970’s

However, close relationship between MLE and MI

=) A type of MI is exactly MLE!



Motivation (II)

Aim is to explore ideas from ML literature that can be applied to
MI in order to, for example,

• choose variables to be included in the imputation model

• gain insight into consequences of misspecification

• ...
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Missing data problem

• Notation
I observed data y

I missing data z

I parameters of model ✓

• Observed likelihood

p(y | ✓) =
Z

p(y , z | ✓)dz
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Multiple imputation

What does MI do?

• impute missing data M � 2 times, creating M completed
datasets

• analyse each M completed datasets separately

• combine the results together over M completed datasets
(Rubin, 1987)



Multiple imputation (II)

How does MI impute missing data?

1. assumes a complete-data model p(y , z | ✓)

2. imputes missing data from imputation model p(z | y , ✓) to
complete dataset

3. estimates ✓ from the completed dataset

4. repeats steps 2-3 M times

5. combines the results



Multiple imputation (III)

Most commonly in a Bayesian manner (Tanner and Wong, 1987):

• approximation to the observed posterior

p(✓ | y) =
Z

p(✓ | y , z)p(z | y)dz

' 1

M

MX

j=1

p(✓ | y , z(j))

• in an iterative manner in two steps
I I-step: imputation of missing data by randomly drawing from

imputation model

I P-step: re-estimation of parameters by randomly drawing from
their postrior distribution given the completed data
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MLE via EM algorithm

Finds MLE of parameters of observed likelihood in the presence of
missing data by making use of an associated complete-data
likelihood; EM iteration ✓(t) ! ✓(t+1) consists of two steps:

• E-step

Q(✓ | ✓(t)) =
Z

log [p(y , z | ✓)] p(z | y , ✓(t))dz

• M-step
✓(t+1) = argmax Q(✓ | ✓(t))



Stochastic versions of EM

Approximate Q(✓ | ✓(t)) using Monte Carlo integration:

• E-step ! I-step:
impute missing data from imputation model

z

(j) ⇠ p(z | y , ✓(t)), j = 1, ...,M

to approximate Q(✓ | ✓(t)) as

Q(✓ | ✓(t)) ' 1

M

MX

j=1

log p(y , z(j) | ✓(t))



Stochastic versions of EM (II)

A popular stochastic version of EM

• stochastic EM (StEM; Celeux and Diebolt 1985):
set M = 1 and iterate until convergence to stationary
distribution  (✓̂) at t = T

✓̂ = E ( (✓̂))

=
1

m

mX

j=1

argmax

⇣
log p(y , z(j) | ✓(T+j))

⌘

• {✓(t)} by StEM algorithm does not converge pointwise to ✓̂
but in distribution (Biscarat et al., 1992)

• StEM estimator unbiased and consistent estimator of MLE of
✓ (Diebolt and Ip, 1995)
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StEM vs MI

• Artificial distinction between MI and StEM
=) A type of MI is equivalent to StEM

StEM:

0. Fix ✓(0) in ⇥
1. z(t+1) ⇠ p(z | y , ✓(t))
2. ✓(t+1) = argmax p(y , z(t+1) | ✓(t))
3. Repeat 1-2 until convergence
4. Combine results of next M
iterations

MI (”proper”):

0. Fix ✓(0) in ⇥
1. z(t+1) ⇠ p(z | y , ✓(t))
2. ✓(t+1) ⇠ p(✓ | y , z(t+1))
3. Repeat 1-2 until convergence
4. Combine results of next M
iterations



StEM vs MI (II)

StEM or MI (”improper”):

0. Fix ✓(0) in ⇥
1. z(t+1) ⇠ p(z | y , ✓(t))
2. ✓(t+1) = argmax p(y , z(t+1) | ✓(t))
3. Repeat 1-2 until convergence
4. Combine results of next M iterations
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Methods for imputation model selection

• In MI literature, no standard tool to choose which auxiliary
variables to be included in the imputation model

• Available model selection criteria in the ML literature

I Akaike information criterion (AIC)

AIC = �2 log p(y | ✓̂) + 2d

with d denoting number of parameters

I Bayesian information criterion (BIC)

BIC = �2 log p(y | ✓̂) + log(n)⇥ d

I Other methods specifically developed for missing data problems
such as Complete AIC (AICcd) and Mixed AIC (AICmix)



Methods for imputation model selection (II)

Why likelihood can distinguish between imputation models?
! incorrect imputation model can be understood as a variational
approximation to observed log-likelihood:

• Let q(z) be the specified imputation model, then

log p(y | ✓) = log p(y | ✓)
Z

q(z)dz =

Z
q(z) log p(y | ✓)dz

=

Z
q(z) log

✓
p(y , z | ✓)
p(z | y , ✓)

◆
dz

= Q(✓ | ✓(T ))�
Z

q(z) log p(z | y , ✓)dz

• When q(z) 6= p(z | y , ✓)

log pq(y | ✓) = log p(y | ✓)� KL(q||p)
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Simulation study

Interested in a response variable Y , which is a function of a
predictor X1

• X1 partially observed

• Two imputation models (linear regressions):
I True model: an auxiliary variable X2, together with Y , to

impute missing values, where X1 and X2 are correlated

I Wrong model: an auxiliary variable X3, together with Y , to
impute missing values, where X3 is independent from X1 and
Y

• Y and X2 conditionally independent given X1

• Complete data (Y ,X1,X2,X3) ⇠ N4(µ,⌃)



Simulation result

• Medium correlation (0.5) between X1 and X2

• X1 60% missing below a limit of detection

• Sample size n varies between n = 50, 100, 1000

• Results averaged over 200 simulated datasets

True/Wrong (n=50) (n=100) (n=1000)
AIC 0.80 0.83 1.00
BIC 0.80 0.83 1.00
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E�ciency gain?

By imputation of missing data more than once in the I-step

• Monte Carlo EM (MCEM; Wei and Tanner 1990):
set M � 2 and iterate until convergence to ✓̂ at t = T

✓̂ = argmax

⇣
Q(✓ | ✓(T )) | z(1), ..., z(M)

⌘

= argmax

1

M

MX

j=1

⇣
log p(y , z(j) | ✓(T ))

⌘

• MCEM more e�cient than StEM
I for finite sample size

I for finite number of imputations (Nielsen, 2000)

� StEM loses e�ciecy due to maximise-then-average
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Conclusion

• A type of MI can be understood as a stochastic version of EM
which is an approximation to MLE

• Access to standard likelihood machinery can improve MI’s
performance:

I standard ICs for imputation model selection

I methods developed for assessment of imputation model
misspecification

I e�cieny gain
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Asymptotic variance

Let W (✓̂) and B(✓̂) denote within- and between-imputation variance of

✓̂, respectively, and I the identity matrix:

• stochastic EM (Louis 1982, Diebolt and Ip 1995, Wang and
Robins 1998, von Hippel 2012; ”Louis method”)

ˆvar(✓̂StEM) = E✓


@2

p(y , z | ✓)
@✓@✓0

| y
�
� cov✓


@p(y , z | ✓)

@✓
| y

�

= W (✓̂)
h
I �W (✓̂)�1

B(✓̂)
i�1

• MI (Rubin 1987; ”Rubin’s rules”)

ˆvar(✓̂MI ) = W (✓̂) + B(✓̂)

= W (✓̂)


I �

⇣
W (✓̂) + B(✓̂)

⌘�1
B(✓̂)

��1


