### A Medley of Mixtures

#### John Hinde

Statistics Group, School of Mathematics, Statistics and Applied Mathematics National University of Ireland, Galway john.hinde@nuigalway.ie

#### Research Supported by SFI Award 07/MI/012

#### Australasian Region IBS, Hobart, Tasmania

30 November 2015







## Summary

- 1 Motivating Example
- 2 Mixture models
- 3 Fish growth studies
- Mixtures of Mixed Models: Time Course Microarray
- 6 Clustering sugar cane SNP data
- 6 Acknowledgements
  - 7 References

## Galaxy Data – Recession Velocities

Recession velocities (in  $10^3 \text{ km/s}$ ) of 82 galaxies.



### Galaxy Data - Fitted Normal Density

Single normal density based on sample mean and standard deviation



Is there any evidence of clustering?

#### Galaxy Data - Fitted Mixture Model

Mixture of normal densities with equal variances



#### Galaxy Data - Fitted Mixtures Models

#### Mixtures of normal densities



three components with unequal variances
 six components with equal variances

#### Mixture Models

- response y (uni/multivariate)
- explanatory variables **x**

#### K-component mixture

$$f(y \mid \boldsymbol{\Theta}, \mathbf{x}) = \sum_{k=1}^{K} \pi_k f_k(y \mid \boldsymbol{\theta}_k, \mathbf{x})$$

- *f<sub>k</sub>* component densities (often same form)
- $\pi_k$  component probabilities ( $\sum_k \pi_k = 1$ )
- θ<sub>k</sub> component parameter vectors (some may be equal across components)

## Galaxy Data - Fitted Mixtures Models

#### Mixtures of normal densities



----- : three components with equal variances ---- : six components with unequal variances

#### Estimation — EM algorithm

#### Likelihood — *n* observations

$$L(\boldsymbol{\Theta}) = \prod_{i=1}^{n} f(y_i \mid \boldsymbol{\Theta}, \mathbf{x}_i) = \prod_{i=1}^{n} \sum_{k=1}^{K} \pi_k f_k(y_i \mid \boldsymbol{\theta}_k, \mathbf{x}_i)$$

Estimation for finite mixture conveniently viewed as EM algorithm.

**E-Step:** Calculate component weights  $w_{ik}$  – the posterior probability that observation  $y_i$  comes from component k (useful for **clustering**):

$$w_{ik} = \frac{\pi_k f_{ik}}{\sum_{\ell} \pi_{\ell} f_{i\ell}}$$

M-step:

• component parameters: estimate  $\widehat{\theta}_k$  from  $(y_i, \mathbf{x}_i)$  with weights  $w_{ik}$ 

component proportions

$$\widehat{\pi}_k = \frac{\sum_{i=1}^n w_{ik}}{n}$$

## Galaxy Data - Fitted Mixtures Models

#### Mixtures of normal densities



----- : six components with equal variances

#### Background

## Fish ageing

#### Count rings on sectioned otolith (ear bone)



Courtesy of Irish Marine Institute

#### Background

## Fish growth

Interested in the relationship between age and length or weight



## Describing fish growth

Growth curves are typically 2-3 parameter non-linear models Most common is the von Bertalanffy:

$$\ell = \ell_{\infty} \left( 1 - e^{-ka} 
ight)$$

where

- *l*: length
- *a*: age
- $\ell_\infty$ : asymptotic length parameter
- k: growth rate parameter

Probabilistic (lognormal)

$$\ell_i = \ell_{\infty} \left( 1 - e^{-ka_i} \right) e^{\varepsilon_i} \qquad \varepsilon_i \sim \mathsf{N}(0, \sigma_\ell^2)$$

#### Background

## Fish growth

#### Fit a growth curve



#### Background

## Fish growth

Sex-specific



#### Sex-specific growth

Standard practice is to discard juvenile data



#### Background

## Sex-specific growth

Standard practice may not make most of the data:

- Focuses on known sexes only
- Uses a reduced sub-region of the age-length space
- May be uninformative on growth rate
- Likely very uninformative when third parameter introduced (non-zero y-axis intercept)

## Sex-specific growth

Suggested alternative:

- Keep all data when fitting sex-specific growth curves
- Treat the sex of the juveniles as a classification problem
- Simultaneously estimate the juvenile sexes and growth curves

How?

## Fish growth: mixture model

Outline:

$$f(\ell|a, \theta) = \pi_F f_F(\ell|a, \theta_F) + \pi_M f_M(\ell|a, \theta_M)$$

where

$$\pi_F = \Pr(S = F),$$

where S is the sex

$$f_{F}(\ell|\boldsymbol{a},\boldsymbol{\theta_{F}}) = \frac{1}{\ell\sigma_{F}\sqrt{2\pi}} \exp\left(-\frac{(\ln(\ell) - \ln(\nu(\boldsymbol{a},\boldsymbol{\theta_{F}})))^{2}}{2\sigma_{F}^{2}}\right)$$

Lognormal where v is the von Bertalanffy function

$$Z_i = \begin{cases} 1, & \text{if observation } i \text{ is female,} \\ 0, & \text{if observation } i \text{ is male.} \end{cases}$$

Note: Z is **partially classified** — we know the sex of **some** of the individuals

#### Example 1: separation

#### Data



### Example 1: separation

#### Standard practice



### Example 1: separation

#### Finite mixture model fit



## Example 2: overlapping

#### Data



## Example 2: overlapping

#### Status quo



## Example 2: overlapping

#### Finite mixture model fit



### Real Data



#### Traditional Modelling of Growth



Dashed: only known sex data; Solid: full knowledge fit

#### Mixture Modelling of Growth



Dashed: EM mixture model fit; Solid: full knowledge fit

## Modelling of Maturity and Growth



## Modelling of Maturity and Growth

Gender specific models for

- Growth length as a nonlinear model of age
- Maturity logit model for maturity (known gender) depending on age

Fitting strategies

- Separate fits for each model
- Joint fit missing gender estimation common to both models

## Modelling of Maturity and Growth — Separate Fits



Dashed: EM fit; Solid: full knowledge fit

#### Modelling of Maturity and Growth — Joint Fit



Dashed: EM fit; Solid: full knowledge fit

## Yeast data — time course microarray data





#### Data

#### Previous analyses

- Have traditionally been clustered using multivariate clustering methods, e.g. k-means clustering, hierarchical clustering, finite mixture models, etc.
- Problems with gene expression data?
  - High dimensionality;
  - Missing values;
  - Large amounts of measurement error;
  - Correlation between measurements made over time on same gene.
- Multivariate techniques have difficulties handling these issues.

#### Smoothing

- Assume that there exists some underlying function g(t) which generates the observed data.
- Observed data may contain a lot of measurement error/noise.

$$y_j = \underbrace{g(t_j)}_{\text{Signal}} + \underbrace{\varepsilon_j}_{\text{Noise}}$$

- Need to estimate smooth functions from noisy data.
- Use basis function expansions:

$$g(t) = \sum_{k=1}^{K} \beta_k \phi_k(t)$$

#### **Basis functions**

• Use *p*th degree truncated power basis (typically p = 1 or 2):

$$g(t_j) = \beta_0 + \beta_1 t_j + \ldots + \beta_p t_j^p + \sum_{\ell=1}^L \beta_{1\ell} (t_j - \kappa_\ell)_+^p,$$
  

$$\kappa_\ell = \ell \text{th knot and } (t_j - \kappa_\ell)_+ = \max(0, t_j - \kappa_\ell).$$



#### P-spline smoothing as a mixed model

- Represent P-spline smoothing as a linear mixed effects model.
- Mixed effects model has the form

$$\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \mathbf{Z}\mathbf{u} + \boldsymbol{\varepsilon}.$$

- For simplicity assume  $\boldsymbol{\varepsilon} \sim N(\mathbf{0}, \sigma_{\varepsilon}^2 \mathbf{I})$ .
- For smoothing must also assume  $\mathbf{u} \sim N(\mathbf{0}, \sigma_u^2 \mathbf{I})$ .
- Estimates of  $\beta$ ,  $\sigma_{\varepsilon}^2$ ,  $\sigma_{u}^2$  and **u** determined using (RE)ML and BLUP.

#### Smoothing using mixed models: example

• Can smooth using a linear mixed effects model:

$$\mathsf{y} = \mathsf{X}eta + \mathsf{Z}\mathsf{u} + \epsilon$$

$$\boldsymbol{\beta} = \begin{pmatrix} \beta_0 \\ \beta_1 \end{pmatrix} \text{ and } \mathbf{u} = \begin{pmatrix} \beta_{11} \\ \beta_{12} \\ \vdots \\ \beta_{1L} \end{pmatrix}$$

$$\mathbf{X} = \begin{pmatrix} 1 & t_1 \\ 1 & t_2 \\ \vdots & \vdots \\ 1 & t_n \end{pmatrix} \text{ and } \mathbf{Z} = \begin{pmatrix} (t_1 - \kappa_1)_+ & \cdots & (t_1 - \kappa_L)_+ \\ (t_2 - \kappa_1)_+ & \cdots & (t_2 - \kappa_L)_+ \\ \vdots & \ddots & \vdots \\ (t_n - \kappa_1)_+ & \cdots & (t_n - \kappa_L)_+ \end{pmatrix}$$

• Assume  $\mathbf{u} \sim N(\mathbf{0}, \sigma_u^2 \mathbf{I})$  and  $\boldsymbol{\varepsilon} \sim N(\mathbf{0}, \sigma_{\varepsilon}^2 \mathbf{I})$ .

#### Why bother?



- Very flexible.
- Computationally efficient.
- Can be fitted using readily available software, e.g. SAS, R, S-Plus, etc.

#### Gene expression clusters

- Want to cluster genes into groups exhibiting the same/similar expression profiles.
- Write the expression level for gene *i* in cluster *c* at time *j* as

$$y_{ij} = \mu_g(t_{ij}) + b_i + \varepsilon_{ij}, \quad j = 1, \ldots, n_i,$$

where  $b_i \sim N(0, \sigma_{bc}^2)$  represent gene-specific shifts from the mean.

• Stack all data from genes in cluster c to get

$$\mathbf{Y}_{c} = \underbrace{\mathbf{X}_{c,s}\boldsymbol{\beta}_{c,s} + \mathbf{Z}_{c,s}\mathbf{u}_{c,s}}_{\mu_{c}(t)} + \mathbf{Z}_{c,b}\mathbf{b}_{c} + \boldsymbol{\varepsilon}_{c},$$

 $\mathbf{u}_{c,s} \sim N(\mathbf{0}, \sigma_{uc}^2 \mathbf{I}), \ \mathbf{b}_c \sim N(\mathbf{0}, \sigma_{bc}^2 \mathbf{I}), \ \boldsymbol{\varepsilon}_c \sim N(\mathbf{0}, \sigma_{\varepsilon c}^2 \mathbf{I}).$ 

#### Gene expression clusters

- In practice, do not know cluster membership.
- Assume **y**<sub>i</sub> comes from a mixture of C clusters:

$$\mathbf{y}_i \sim \pi_1 \mathcal{N}(\mu_1(\mathbf{t}_i), \mathbf{V}_{i1}) + \pi_2 \mathcal{N}(\mu_2(\mathbf{t}_i), \mathbf{V}_{i2}) + \ldots + \pi_C \mathcal{N}(\mu_C(\mathbf{t}_i), \mathbf{V}_{iC})$$

where

$$\mu_{c}(\mathbf{t}_{i}) = \mathbf{X}_{i,s}\boldsymbol{\beta}_{c,s} + \mathbf{Z}_{i,s}\mathbf{u}_{c,s}$$

and  $\mathbf{V}_{ic} = \sigma_{bc}^2 E_{n_i \times n_i} + \sigma_{\varepsilon c}^2 \mathbf{I}_{n_i \times n_i}$ •  $\pi_1, \pi_2, \dots, \pi_C$  are mixing proportions such that  $\sum_{c=1}^C \pi_c = 1$ .

- Estimate  $\pi_1, \ldots, \pi_C$ ,  $(\boldsymbol{\mu}_1, \boldsymbol{V}_1), \ldots, (\boldsymbol{\mu}_C, \boldsymbol{V}_G)$ .
- Obtain (posterior) probability that gene *i* is from cluster *c*.

#### Use EM algorithm.

#### EM algorithm



Cluster 3



#### EM algorithm



Cluster 3



#### Results

### Results: BIC suggests 58 clusters; 6 example groups



#### Results



- GO terms:- Sterol transport and stress-response.
- Sterols important in many cellular processes (usually synthesised in the ER membrane).
- Anaerobic conditions: must be imported into the cell ⇒ sterol import genes activated.
- Other genes from Seripauperin family only activated under anaerobic conditions.

## Sugar Cane



#### Motivation

- An allele is a particular form of a gene, e.g. the gene for eye colour has a number of alleles.
- Most organisms are diploid (2 sets of chromosomes).
- Sugarcane is polypoid (8 to 14 chromosomes) with individual alleles in varying numbers.
- Want to identify the many different alleles and associated genotypes/phenotypes.
- Can do this through the analysis of single nucleotide polymorphisms (SNPs).

### **SNPs**

- SNPs occur during cell division, when cell divides in two by first copying its DNA.
- SNPs are mistakes that occur during the copying process i.e. changes that occur at a single base pair in DNA sequence.



- Frequency of a SNP base (A, T, C, G) at a locus determined by
  - the number of chromosomes carrying the gene;
  - the number of different alleles (or haplotypes);
  - the frequency of each allele possessing each SNP base.
- In sugarcane, the proportional frequencies of each SNP base varies depending on the number of alleles containing the SNP locus.
- Gives an indication of the number of allele haplotypes present for a gene.

#### Data — Spectra





 Homozygous individual with allele G (nucleotide)

 Heterozygous individual with some copies of allele C and some copies of allele G (G > C)

#### SNPs

### Data — Idealised



Low Mass

#### Real Data

- How many clusters?
- What are the angles (dosages) and proportions?
- How to allocate the individuals?



#### Data — Illustrative



Want to develop a technique that can:

- determine the number of clusters present;
- determine the angles between the lines that represent each cluster to identify different genotypes;
- provide a probabilistic clustering to identify points that have high probability of belonging to a particular cluster (i.e. points that have a particular genotype) and those that are regarded as an unclear genotype.

#### Finite Mixture Models

- Have a *p*-length data vector  $\mathbf{y}_i = (h.H, h.L)$  for each individual.
- Finite mixture models assume that the data come from a mixture of *G* clusters such that

$$f(\mathbf{y}_i; \boldsymbol{\theta}) = \sum_{g=1}^{G} \pi_g f_g(\mathbf{y}_i; \boldsymbol{\theta}_g), \qquad (1)$$

where  $f(\mathbf{y}_i; \boldsymbol{\theta})$  is the density of the data,  $f_g(\mathbf{y}_i; \boldsymbol{\theta}_g)$  is the gth component density and  $\pi_g$  are mixing proportions such that

$$\sum_{g} \pi_{g} = 1.$$

Usually assume

$$f_g(\mathbf{y}_i; \boldsymbol{\theta}_g) = N(\boldsymbol{\mu}_g, \boldsymbol{\Sigma}_g)$$
(2)

• Need to estimate  $(\mu_1, \Sigma_1, \dots, \mu_G, \Sigma_G, \pi_1, \dots, \pi_{G-1})$  using EM algorithm.

#### Mclust



## Linear Regression Lines

- Assume one of h.H/h.L is the response variable y<sub>i</sub> and the other is the explanatory variable x<sub>i</sub>.
- Fit a linear regression line through the origin

$$y_i = \beta_{1g} x_i + \varepsilon_i$$

to the data in each component.

Component densities now written as

$$f_g(y_i|\beta_{1g}x_i,\sigma_g^2) = N(\beta_{1g}x_i,\sigma_g^2),$$

where  $\beta_{1g}$  is the slope in the gth component and  $\sigma_g^2$  is the variance.

• Need to determine estimates of  $\beta_{1g}$ ,  $\sigma_g^2$  (can be the same/different for each cluster) and  $(\pi_1, \ldots, \pi_{G-1})$ .

#### Results - Contig89b17



#### Model based clustering

#### Results - Contig2312b2



- Special case of Total Least Squares.
- Orthogonal regression line has the form

$$y_i = x_i \beta_{1g}$$

• Assumes both x and y are measured with error:

$$\begin{aligned} x_i &= x_i^* + \epsilon_i, \quad \mathsf{Var}(\epsilon) = \sigma_x^2 \\ y_i &= y_i^* + \tau_i, \quad \mathsf{Var}(\tau) = \sigma_y^2 \end{aligned}$$

- Orthogonal regression  $\Rightarrow \sigma_x^2/\sigma_y^2 = \eta$  and independent.
- Suitable when both variables are linearly related and subject to error.
- Can fit a regression line to group parallel to the y-axis.



- Calculate  $\hat{\beta}_{1g}$  using SVD.
- Need to find fitted values  $(\hat{x}_i, \hat{y}_i)$ .
- Find equation of line orthogonal to line with slope  $\hat{\beta}_{1g}$  that goes through original data point  $(x_i, y_i)$ .
- Point at which this line and orthogonal regression line intersect gives fitted values:

$$\hat{x}_i = rac{y_i \hat{eta}_{1g} + x_i}{1 + \hat{eta}_{1g}^2}, \quad \hat{y}_i = \hat{x}_i \hat{eta}_{1g}$$

• Assume  $\sigma_x^2 = \sigma_y^2 \Rightarrow$  overall estimate of  $\sigma_g^2$  given by

$$\hat{\sigma}_g^2 = \frac{\sum_{i=1}^n (x_i - \hat{x}_i)^2 + \sum_{i=1}^n (y_i - \hat{y}_i)^2}{2(n-1)}$$

For clustering

$$f(x_i, y_i | \boldsymbol{\theta}_g) = \sum_{g=1}^{G} \pi_g f_g(x_i, y_i | \boldsymbol{\theta}_g)$$

• Component densities have form

$$f_g(x_i, y_i | \boldsymbol{\theta}_g) = N(\boldsymbol{\mu}_g, \boldsymbol{\Sigma}_g),$$

where

$$\boldsymbol{\mu}_{g} = \left( egin{array}{c} \hat{x}_{i} \ \hat{y}_{i} \end{array} 
ight), \quad \boldsymbol{\Sigma}_{g} = \left( egin{array}{c} \hat{\sigma}_{g}^{2} & 0 \ 0 & \hat{\sigma}_{g}^{2} \end{array} 
ight)$$

• For each component find  $\hat{x}_i$ ,  $\hat{y}_i$  and  $\hat{\sigma}_g^2$  as outlined in previous slide.

#### Results - Contig89b17



#### Results - Contig2312b2



#### Model choice & Use

• How many lines/groups?

Use BIC or similar approaches, as in standard model-based clustering.

- Constrained models lines at multiple of a common angle
- Which lines are present?

Estimated mixture proportions — give information on ploidy level and genotype distribution

#### Polar Coordinates: Results - Contig2312b2

$$r=\sqrt{x^2+y^2}$$
  $heta=rctan(y/x)$ 



#### Acknowledgements

- Norma Coffey
- Jochen Einbeck
- Marie-José Martinez
- Cóilín Minto
- Augusto Franco Garcia

#### References

- Aitkin, M.A., Francis, B.F., Hinde, J.P. and Darnell, R. (2009) *Statistical Modelling in R.* Oxford University Press, 576pp.
- Coffey, Norma and Hinde, John (2011) Analyzing Time-Course Microarray Data Using Functional Data Analysis — A Review, *Statistical Applications in Genetics and Molecular Biology*, **10**: 1, Article 23.
- Coffey, Norma, Hinde, John and Holian, Emma (2014) Clustering longitudinal profiles using P-splines and mixed effects models applied to time-course gene expression data. *Computational Statistics and Data Analysis*, **71**, 14-29.
- Coffey, Norma, Hinde, John and Garcia, Augusto Franco. (2014) Finite mixture model clustering of SNP data. In *Statistical Modelling:Papers in Biostatistics and Bioinformatics*, eds MacKenzie, G. and Peng, D., Springer, 139-157.

## The End !!!

# Thank you for your attention