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Motivating Example

Galaxy Data – Recession Velocities

Recession velocities (in 103 km/s) of 82 galaxies.
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Motivating Example

Galaxy Data – Fitted Normal Density

Single normal density based on sample mean and standard deviation
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Is there any evidence of clustering?
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Motivating Example

Galaxy Data – Fitted Mixture Model

Mixture of normal densities with equal variances
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Motivating Example

Galaxy Data – Fitted Mixtures Models

Mixtures of normal densities
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——— three components with unequal variances
– – – – six components with equal variances
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Mixture models

Mixture Models

response y (uni/multivariate)

explanatory variables x

K -component mixture

f (y | Θ, x) =
K∑

k=1

πk fk(y | θk , x)

fk — component densities (often same form)

πk — component probabilities (
∑

k πk = 1)

θk — component parameter vectors
(some may be equal across components)
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Mixture models

Galaxy Data – Fitted Mixtures Models

Mixtures of normal densities
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——— : three components with equal variances
– – – – : six components with unequal variances
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Mixture models

Estimation — EM algorithm

Likelihood — n observations

L(Θ) =
n∏

i=1

f (yi | Θ, xi ) =
n∏

i=1

K∑

k=1

πk fk(yi | θk , xi )

Estimation for finite mixture conveniently viewed as EM algorithm.

E-Step: Calculate component weights wik – the posterior probability that
observation yi comes from component k (useful for clustering):

wik =
πk fik∑
` π`fi`

M-step:

component parameters: estimate θ̂k from (yi , xi ) with weights wik

component proportions

π̂k =

∑n
i=1 wik

n
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Mixture models

Galaxy Data – Fitted Mixtures Models

Mixtures of normal densities
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——— : three components with equal variances
– – – – : six components with unequal variances
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Fish growth studies Background

Fish ageing

Count rings on sectioned otolith (ear bone)

Courtesy of Irish Marine Institute
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Fish growth studies Background

Fish growth

Interested in the relationship between age and length or weight

0 2 4 6 8 10 12

0
5

10
15

20
25

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●
●

●●

●

●

●

●

● ●

●

●

●

●
●

●

●

●
● ●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●
●

●

Age (years)

Le
ng

th
 (

cm
)

John Hinde (NUIG) 30 November 2015 12 / 69



Fish growth studies Background

Describing fish growth

Growth curves are typically 2-3 parameter non-linear models

Most common is the von Bertalanffy:

` = `∞
(

1− e−ka
)

where

`: length

a: age

`∞: asymptotic length parameter

k : growth rate parameter

Probabilistic (lognormal)

`i = `∞
(

1− e−kai
)
eεi εi ∼ N(0, σ2` )
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Fish growth studies Background

Fish growth

Fit a growth curve
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Fish growth studies Background

Fish growth

Sex-specific
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Fish growth studies Background

Sex-specific growth

Standard practice is to discard juvenile data
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Fish growth studies Background

Sex-specific growth

Standard practice may not make most of the data:

Focuses on known sexes only

Uses a reduced sub-region of the age-length space

May be uninformative on growth rate

Likely very uninformative when third parameter introduced

(non-zero y-axis intercept)
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Fish growth studies Background

Sex-specific growth

Suggested alternative:

Keep all data when fitting sex-specific growth curves

Treat the sex of the juveniles as a classification problem

Simultaneously estimate the juvenile sexes and growth curves

How?
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Fish growth studies Mixture of nonlinear regressions

Fish growth: mixture model

Outline:

f (`|a,θ) = πF fF (`|a,θF ) + πM fM(`|a,θM)

where
πF = Pr(S = F ),

where S is the sex

fF (`|a,θF ) =
1

`σF
√

2π
exp

(
−(ln(`)− ln(v(a,θF )))2

2σ2F

)

Lognormal where v is the von Bertalanffy function

Zi =

{
1, if observation i is female,

0, if observation i is male.

Note: Z is partially classified — we know the sex of some of the
individuals
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Fish growth studies Mixture of nonlinear regressions

Example 1: separation

Data
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Fish growth studies Mixture of nonlinear regressions

Example 1: separation

Standard practice
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Fish growth studies Mixture of nonlinear regressions

Example 1: separation

Finite mixture model fit
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Fish growth studies Mixture of nonlinear regressions

Example 2: overlapping

Data
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Fish growth studies Mixture of nonlinear regressions

Example 2: overlapping

Status quo
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Fish growth studies Mixture of nonlinear regressions

Example 2: overlapping

Finite mixture model fit
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Fish growth studies Mixture of nonlinear regressions

Real Data
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Fish growth studies Mixture of nonlinear regressions

Traditional Modelling of Growth
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Fish growth studies Mixture of nonlinear regressions

Mixture Modelling of Growth
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Fish growth studies Mixture of nonlinear regressions

Modelling of Maturity and Growth
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Fish growth studies Mixture of nonlinear regressions

Modelling of Maturity and Growth

Gender specific models for

Growth — length as a nonlinear model of age

Maturity — logit model for maturity (known gender) depending on
age

Fitting strategies

Separate fits for each model

Joint fit — missing gender estimation common to both models
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Fish growth studies Mixture of nonlinear regressions

Modelling of Maturity and Growth — Separate Fits
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Fish growth studies Mixture of nonlinear regressions

Modelling of Maturity and Growth — Joint Fit
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Mixtures of Mixed Models: Time Course Microarray Data

Yeast data — time course microarray data
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Mixtures of Mixed Models: Time Course Microarray Data

Previous analyses

Have traditionally been clustered using multivariate clustering
methods, e.g. k-means clustering, hierarchical clustering, finite
mixture models, etc.

Problems with gene expression data?

High dimensionality;
Missing values;
Large amounts of measurement error;
Correlation between measurements made over time on same gene.

Multivariate techniques have difficulties handling these issues.
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Mixtures of Mixed Models: Time Course Microarray Smoothing

Smoothing

Assume that there exists some underlying function g(t) which
generates the observed data.

Observed data may contain a lot of measurement error/noise.

yj = g(tj)︸︷︷︸
Signal

+ εj︸︷︷︸
Noise

Need to estimate smooth functions from noisy data.

Use basis function expansions:

g(t) =
K∑

k=1

βkφk(t)
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Mixtures of Mixed Models: Time Course Microarray Smoothing

Basis functions

Use pth degree truncated power basis (typically p = 1 or 2):

g(tj) = β0 + β1tj + . . .+ βpt
p
j +

L∑

`=1

β1`(tj − κ`)p+,

κ` = `th knot and (tj − κ`)+ = max(0, tj − κ`).
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Mixtures of Mixed Models: Time Course Microarray Smoothing using mixed model

P-spline smoothing as a mixed model

Represent P-spline smoothing as a linear mixed effects model.

Mixed effects model has the form

y = Xβ + Zu + ε.

For simplicity assume ε ∼ N(0, σ2ε I).

For smoothing must also assume u ∼ N(0, σ2uI).

Estimates of β, σ2ε , σ2u and u determined using (RE)ML and BLUP.
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Mixtures of Mixed Models: Time Course Microarray Smoothing using mixed model

Smoothing using mixed models: example

Can smooth using a linear mixed effects model:

y = Xβ + Zu + ε

β =

(
β0
β1

)
and u =




β11
β12

...
β1L




X =




1 t1
1 t2
...

...
1 tn


 and Z =




(t1 − κ1)+ · · · (t1 − κL)+
(t2 − κ1)+ · · · (t2 − κL)+

...
. . .

...
(tn − κ1)+ · · · (tn − κL)+




Assume u ∼ N(0, σ2uI) and ε ∼ N(0, σ2ε I).
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Mixtures of Mixed Models: Time Course Microarray Smoothing using mixed model

Why bother?

y = Xβ + Zu + ε
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Very flexible.

Computationally efficient.

Can be fitted using readily available software, e.g. SAS, R, S-Plus, etc.
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Mixtures of Mixed Models: Time Course Microarray Clustering

Gene expression clusters

Want to cluster genes into groups exhibiting the same/similar
expression profiles.

Write the expression level for gene i in cluster c at time j as

yij = µg (tij) + bi + εij , j = 1, . . . , ni ,

where bi ∼ N(0, σ2bc) represent gene-specific shifts from the mean.

Stack all data from genes in cluster c to get

Yc = Xc,sβc,s + Zc,suc,s︸ ︷︷ ︸
µc (t)

+Zc,bbc + εc ,

uc,s ∼ N(0, σ2uc I), bc ∼ N(0, σ2bc I), εc ∼ N(0, σ2εc I).
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Mixtures of Mixed Models: Time Course Microarray Clustering

Gene expression clusters

In practice, do not know cluster membership.

Assume yi comes from a mixture of C clusters:

yi ∼ π1N(µ1(ti ),Vi1) + π2N(µ2(ti ),Vi2) + . . .+ πCN(µC (ti ),ViC )

where
µc(ti ) = Xi ,sβc,s + Zi ,suc,s

and Vic = σ2bcEni×ni + σ2εc Ini×ni

π1, π2, . . . , πC are mixing proportions such that
C∑

c=1
πc = 1.

Estimate π1, . . . , πC , (µ1,V1), . . . , (µC ,VG ).

Obtain (posterior) probability that gene i is from cluster c .

Use EM algorithm.
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Mixtures of Mixed Models: Time Course Microarray Clustering

EM algorithm
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Mixtures of Mixed Models: Time Course Microarray Clustering

EM algorithm

0 2 4 6 8 10 12

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

Cluster 1

Time

E
xp

re
ss

io
n 

le
ve

l

0 2 4 6 8 10 12

−
1.

5
−

0.
5

0.
0

0.
5

Cluster 2

Time

E
xp

re
ss

io
n 

le
ve

l

0 2 4 6 8 10 12

−
4

−
3

−
2

−
1

0
1

2

Cluster 3

Time

E
xp

re
ss

io
n 

le
ve

l

John Hinde (NUIG) 30 November 2015 42 / 69



Mixtures of Mixed Models: Time Course Microarray Results

Results: BIC suggests 58 clusters; 6 example groups
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Mixtures of Mixed Models: Time Course Microarray Results

Results
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GO terms:- Sterol transport and
stress-response.

Sterols important in many
cellular processes (usually
synthesised in the ER
membrane).

Anaerobic conditions: must be
imported into the cell ⇒ sterol
import genes activated.

Other genes from Seripauperin
family only activated under
anaerobic conditions.
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Clustering sugar cane SNP data

Sugar Cane
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Clustering sugar cane SNP data

Motivation

An allele is a particular form of a gene, e.g. the gene for eye colour
has a number of alleles.

Most organisms are diploid (2 sets of chromosomes).

Sugarcane is polypoid (8 to 14 chromosomes) with individual alleles
in varying numbers.

Want to identify the many different alleles and associated
genotypes/phenotypes.

Can do this through the analysis of single nucleotide polymorphisms
(SNPs).
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Clustering sugar cane SNP data SNPs

SNPs

SNPs occur during cell division, when cell divides in two by first
copying its DNA.
SNPs are mistakes that occur during the copying process i.e. changes
that occur at a single base pair in DNA sequence.

SNPs

SNPs occur during cell division, when cell divides in two by first
copying its DNA.
SNPs are mistakes that occur during the copying process i.e.
changes that occur at a single base pair in DNA sequence.
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Clustering sugar cane SNP data SNPs

SNPs

Frequency of a SNP base (A, T, C, G) at a locus determined by

the number of chromosomes carrying the gene;
the number of different alleles (or haplotypes);
the frequency of each allele possessing each SNP base.

In sugarcane, the proportional frequencies of each SNP base varies
depending on the number of alleles containing the SNP locus.

Gives an indication of the number of allele haplotypes present for a
gene.
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Clustering sugar cane SNP data SNPs

Data — Spectra
Introduction Single Dose Markers SNP markers Linkage Maps with All Dosages

Principles

SNPS IN POLYPLOIDS - SPECTRA
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Clustering sugar cane SNP data SNPs

Data — Idealised

Introduction Single Dose Markers SNP markers Linkage Maps with All Dosages

Principles

F1 POPULATION

0

05

10

15

20

25

30

6150 6200 6250 6300 6350 6400 6450 6500

TC58519_E_fwd

Mass

T C58519_ E _ fw d

35

40

45

50

55

60

In
te
n
si
ty

0 10 20 30 40 50 60

0
10

20
30

40
50

60

Low Mass

H
ig
h
M
a
ss

all G's G's and C's (G >> C) G's and C's (G > C)

C G

John Hinde (NUIG) 30 November 2015 50 / 69



Clustering sugar cane SNP data SNPs

Real Data
Introduction Single Dose Markers SNP markers Linkage Maps with All Dosages

Results

REAL DATA, F1

How many clusters?
What are the angles (dosages) and proportions?
How to allocate the individuals?
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Clustering sugar cane SNP data SNPs

Data — Illustrative
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Clustering sugar cane SNP data SNPs

Aims

Want to develop a technique that can:

determine the number of clusters present;

determine the angles between the lines that represent each cluster to

identify different genotypes;

provide a probabilistic clustering to identify points that have high

probability of belonging to a particular cluster (i.e. points that have a

particular genotype) and those that are regarded as an unclear

genotype.
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Clustering sugar cane SNP data Model based clustering

Finite Mixture Models

Have a p-length data vector yi = (h.H, h.L) for each individual.

Finite mixture models assume that the data come from a mixture of
G clusters such that

f (yi ;θ) =
G∑

g=1

πg fg (yi ;θg ), (1)

where f (yi ;θ) is the density of the data, fg (yi ;θg ) is the g th
component density and πg are mixing proportions such that

∑

g

πg = 1.

Usually assume
fg (yi ;θg ) = N(µg ,Σg ) (2)

Need to estimate (µ1,Σ1, . . . ,µG ,ΣG , π1, . . . , πG−1) using EM
algorithm.
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Clustering sugar cane SNP data Model based clustering

Mclust
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Clustering sugar cane SNP data Model based clustering

Linear Regression Lines

Assume one of h.H/h.L is the response variable yi and the other is
the explanatory variable xi .

Fit a linear regression line through the origin

yi = β1gxi + εi

to the data in each component.

Component densities now written as

fg (yi |β1gxi , σ2g ) = N(β1gxi , σ
2
g ),

where β1g is the slope in the gth component and σ2g is the variance.

Need to determine estimates of β1g , σ2g (can be the same/different
for each cluster) and (π1, . . . , πG−1).
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Clustering sugar cane SNP data Model based clustering

Results - Contig89b17
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Clustering sugar cane SNP data Model based clustering

Results - Contig2312b2

●

●

●

●

●

●

● ●
● ●

● ●

0 5 10 15 20 25

0
10

20
30

40
50

y = h.H

h.L

h.
H

●
● ●●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●
●

●

● ●●
●

● ●

●
● ●

● ●●
●

●●

0 10 20 30 40 50
0

5
10

15
20

25

y = h.L

h.H

h.
L

John Hinde (NUIG) 30 November 2015 58 / 69



Clustering sugar cane SNP data Model based clustering

Orthogonal Regression Lines

Special case of Total Least Squares.

Orthogonal regression line has the form

yi = xiβ1g

Assumes both x and y are measured with error:

xi = x∗i + εi , Var(ε) = σ2x

yi = y∗i + τi , Var(τ) = σ2y

Orthogonal regression ⇒ σ2x/σ
2
y = η and independent.

Suitable when both variables are linearly related and subject to error.

Can fit a regression line to group parallel to the y-axis.
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Clustering sugar cane SNP data Model based clustering

Orthogonal Regression Lines
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Clustering sugar cane SNP data Model based clustering

Orthogonal Regression Lines

Calculate β̂1g using SVD.

Need to find fitted values (x̂i , ŷi ).

Find equation of line orthogonal to line with slope β̂1g that goes
through original data point (xi , yi ).

Point at which this line and orthogonal regression line intersect gives
fitted values:

x̂i =
yi β̂1g + xi

1 + β̂21g
, ŷi = x̂i β̂1g

Assume σ2x = σ2y ⇒ overall estimate of σ2g given by

σ̂2g =

n∑
i=1

(xi − x̂i )
2 +

n∑
i=1

(yi − ŷi )
2

2(n − 1)
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Clustering sugar cane SNP data Model based clustering

Orthogonal Regression Lines

For clustering

f (xi , yi |θg ) =
G∑

g=1

πg fg (xi , yi |θg )

Component densities have form

fg (xi , yi |θg ) = N(µg ,Σg ),

where

µg =

(
x̂i
ŷi

)
, Σg =

(
σ̂2g 0
0 σ̂2g

)

For each component find x̂i , ŷi and σ̂2g as outlined in previous slide.
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Clustering sugar cane SNP data Model based clustering

Results - Contig89b17
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Clustering sugar cane SNP data Model based clustering

Results - Contig2312b2
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Clustering sugar cane SNP data Model based clustering

Model choice & Use

How many lines/groups?

Use BIC or similar approaches, as in standard model-based clustering.

Constrained models — lines at multiple of a common angle

Which lines are present?

Estimated mixture proportions — give information on ploidy level and
genotype distribution
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Clustering sugar cane SNP data Model based clustering

Polar Coordinates: Results - Contig2312b2

r =
√

x2 + y2 θ = arctan(y/x)

φ3 = arctan

(
3.252666− 2.811954

1 + (2.811954)(3.252666)

)
× 180

π
= 2◦49′

φ4 = arctan

(
4.010008− 3.252666

1 + (3.252666)(4.010008)

)
× 180

π
= 3◦09′

φ5 = arctan

(
5.244745− 4.010008

1 + (4.010008)(5.244745)

)
× 180

π
= 3◦21′

φ6 = arctan

(
6.159774− 5.244745

1 + (5.244745)(6.159774)

)
× 180

π
= 1◦57′

φ7 = arctan

(
34.038754− 6.159774

1 + (6.159774)(34.038754)

)
× 180

π
= 7◦54′

4.6 Transforming Data To Polar Co-ordinates

The (x, y) data were then transformed into polar co-ordinates (r, θ) and the following

plots display the (r, θ) values with points coloured according to cluster membership

obtained in the clustering solution above. Also displayed are the densities of the data

in each cluster.
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The End !!!

Thank you for your attention
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