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Model Averaging

Attempts to incorporate model uncertainty into inference by using

multiple models {M1, . . . ,MJ} for a fixed, finite J .

In frequentist model averaging, we define a weight ŵj for each model,

usually by exponentiating minus AIC, BIC or some other information

criterion.

• Buckland et al. (1997) and Burnham & Anderson (2002) averaged point

estimates and tried to estimate the standard error of the

estimator. The distribution theory is not correct (Claeskens & Hjort,

2008, p207) but the coverage is fine in some simulations.

• The Hjort & Claeskens (2003) approach is essentially the same as

constructing the standard confidence interval from the full

model (Kabaila & Leeb, 2006; Wang & Zou, 2013).

• Fletcher and Turek (2011) and Turek and Fletcher (2012) averaged the

equations defining the endpoints of confidence intervals.
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Fletcher-Turek Profile Intervals (MPI)

A 1− α level profile likelihood confidence interval for a parameter θ in a

model Mj is obtained by computing the signed-root log-likelihood ratio for θ

under Mj ,

Rj(θ) = sgn(θ̂j − θ)[2{ℓj(θ̂j , λ̂j)− ℓj(θ, λ̂jθ)}]
1/2,

and then solving for the lower and upper endpoints of the interval the two

equations obtained by equating the normal cumulative distribution function

evaluated at the signed-root log likelihood ratio to 1− α/2 and α/2,

respectively.

When we have models {M1, . . . ,MJ}, MPI confidence intervals for θ, with

nominal coverage 1− α, are obtained by solving for the endpoints a weighted

average of the respective endpoint equations for each model:

J
∑

j=1

ŵjΦ{Rj(θ)} = α/2 and
J
∑

j=1

ŵjΦ{Rj(θ)} = 1− α/2.
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Turek-Fletcher Tail-Area Intervals (MATA)

A 1− α level tail area confidence interval for a parameter θ in a model Mj is

obtained in the same way by replacing the signed-root log-likelihood ratio by

the t ratio

Tj(θ) = (θ̂j − θ)/se(θ̂j)

and solving the two equations obtained by equating Gνj
{Tj(θ)} to 1− α/2

and α/2, where Gνj
is the cumulative distribution function of the distribution

of Tj(θ) under model Mj (often the Student t distribution with νj degrees of

freedom).

When we have models {M1, . . . ,MJ}, MATA confidence intervals for θ, with

nominal coverage 1− α, are obtained by solving for the endpoints a weighted

average of the respective endpoint equations for each model:

J
∑

j=1

ŵjGνj
{Tj(θ)} = α/2 and

J
∑

j=1

ŵjGνj
{Tj(θ)} = 1− α/2.
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Evaluation

Compare the coverage and expected length properties of intervals. Actually,

we should evaluate minimum coverage probabilities and maximum

expected lengths to characterise performance over unknown nuisance

parameters.

• Simulations cover only a limited set of values of the unknown nuisance

parameters and the conclusions apply only to these settings.

• Variability in simulation results complicates finding bounds on coverage

or expected length, particularly when there are a large number of

nuisance parameters.

• Consider simple cases (e.g. two nested regression models) where we can

do exact calculations to evaluate the properties of the confidence intervals

both in particular settings and uniformly over unknown nuisance

parameters.
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Cloud seeding example

Biondini, Simpson and Woodley (1997): n = 33 observations from an

experiment to compare seeding against a control treatment.

The response variable is the floating target rainfall volume.

Then explanatory variables are the treatment indicator, 5 main effects

(including seedability), 5 squared effects and the 10 interactions between the

five main effects so that p, the dimension of the regression parameter vector,

is 22.

The goal is to construct a 95% confidence interval for θ, the expected

response when cloud seeding is used minus the expected response

under random control when all the other explanatory variables are

the same.
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M2 is the full model (p = 22) and M1 is the submodel excluding the squared

seedability term. The expected length is scaled by the expected length of the

standard confidence interval with the minimum coverage.
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For MPI, the coverage probability is close to 0.7315 for all γ rather than the

nominal 0.95 and the scaled expected length is close to one for all γ.

Therefore, MPI is actually similar to the standard 0.7315 confidence

interval for θ. (For the cloud seeding example, the poor minimum coverage

of MPI is due to the value of p/n = 2/3 not being small.)

For MATA, the coverage probability of MATA is close to 0.95 for all γ with a

minimum coverage probability 0.9465 and the scaled expected length is close

to one for all γ. Therefore, MATA is similar to the standard 0.95

confidence interval for θ under M2.
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Conclusion

An ideal confidence interval should have minimal coverage equal to its

nominal coverage and, to show a benefit of model selection, have scaled

expected length that

(a) is substantially less than 1 under M1;

(b) has a maximum value that is not much larger than 1; and

(c) is close to 1 if the data happens to strongly contradict the model M1.

This is evidently difficult to achieve.

Performing well in a simple evaluation situation does not mean that a model

averaging procedure will always perform well; we also need to explore other

situations, such as other models.

Details and references in Kabaila et al (2015) Scand. J. Statist.

—DOI: 10.1111/sjos.12163
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Model averaging over two regression models

Model M2: Y = Xβ + ε, where Y is a random n-vector of responses, X is a

known n× p model matrix with p < n linearly independent columns, β is an

unknown p-vector parameter and ε ∼ N(0, σ2In), with σ2 an unknown

positive parameter.

Model M1: M2 with τ = c⊤β − t = 0, where c is a specified nonzero

p-vector that is linearly independent of a and t is a specified number.

Parameter of interest: θ = a⊤β, where a is a specified nonzero p-vector.

Estimators: Let β̂ be the least squares estimator of β and

σ̂2 = (Y −Xβ̂)⊤(Y −Xβ̂)/(n− p) be the usual unbiased estimator of σ2. Set

θ̂ = a⊤β̂ and τ̂ = c⊤β̂ − t. Define vθ = Var(θ̂)/σ2 = a⊤(X⊤X)−1a and

vτ = Var(τ̂)/σ2 = c⊤(X⊤X)−1c.

Important quantities: the known correlation ρ = a⊤(X⊤X)−1c/(vθvτ )
1/2

between θ̂ and τ̂ and the scaled unknown parameter γ = τ
/(

σv
1/2
τ

)

.


