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Motivation

+ A quantitative trait locus (QTL) is a section of the DNA
(locus) that is linked to, or contains, the genes that control
the quantitative trait.

+ QTL analysis is often an important early step for
identification of genes that cause trait variation.

+ Often in crops, bi-parental population and genetic markers
such as SNP, DArT, SSR are used to detect potential QTLs.

* A linear mixed model approach to QTL analysis

accommodates well to account for non-genetic sources of
variation and this is the basis of our QTL analysis.
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Motivation

* Verybyla et al. (2007) proposed a mixed model approach
that considered all markers/intervals (unlinked to QTL) as
random effects.

» However these marker effects were considered iid.

+ A number of different spatial covariance structure to the
marker effects within chromosomes were proposed
[Gianola et al., 2003, Smith and Cullis, 2011,

Yang and Tempelman, 2012, Morota et al., 2014].

+ These methods require a distance metric between markers
and/or some ordering of markers.
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Aim

|
We present a possible ordering and distance metric to be used
for correlated marker effects in the QTL analysis.

+ A number of biological properties/assumptions are
considered to build an appropriate ordering and
chromosome assignment.
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Biology Background

hromesame Chromesome Chramaoscme Chromasome Chromosome Chromasome Chramasome

200 K KK XK 000 KK XN
v WK XX

+ Wheat is a hexaploid that has six copies of its seven
chromosomes.

+ We can treat wheat genome as 21 pairs of chromosomes.
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Recombination

Crossing-over and recombination during meiosis

+ Recombination fraction (6) is the frequency with of a single
recombinant event between two genes.
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Mendel’'s 2nd Law

* Mendel’'s Second Law: the law of independent assortment
- during meiosis, chromosomes assort randomly into
gametes such that segregations of alleles of one gene is
independent of alleles of another gene.

- As a consequence of this law, £(6) will be 0.5 when two
genes are located on different chromosomes or when they
are widely separated on the same chromosome.

* When two genes are close together on the same
chromosome, they do not assort independently and are
said to be linked and 6 < 0.5.
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Double Haploid population

Doubled haploid wheat breeding - instant homozygous wheat lines
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No. of markers No. of lines

KUKRI x RAC875 6197 180
KUKRI x EXCALIBUR 5746 179
MACE x GLADIUS1 5054 207
RAC1548 x GLADIUS 5200 155
SCOUT x GLADIUS 5145 402
SCOUT x MACE 4950 255
AUS17840 x GLADIUS 5513 135
HALBERD x KENNEDY 6293 133

AUS17750 x GLADIUS 6160 125
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Metrics

+ A centimorgan (cM) is a genetic distance (as opposed to
physical distance) that describes a recombination of 0.01.

+ Kosambi mapping function is used for converting 6 to cM
which attempts to correct for multiple crossovers.

» The wheat genome is roughly 200cM per chromosome.
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Metrics

« The LOD score compares the likelihood of observed data if
two loci are indeed linked to the likelihood of the same data
purely by chance:

(1 — O)NA x R

LOD = logyq O.5NATA

where NR and R are the number of non-recombinant lines
and R denotes the number of recombinant offspring.

+ By convention LOD > 3.0 is considered evidence for
linkage.
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Data-Set

+ We have 9 DH population with SNP markers for all.
+ Two of these DH population also contain SSR markers with
chromosome labels.

SNP markers SSR markers
Unknown 1A
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Data cleaning

+ The following are done using R-package ASMap
[Taylor and Butler, 2015].
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Initial supervised learning

+ The clustering of the “unanchored” SNP markers to
“anchored” SSR markers (training set) are done under
following assumptions:

+ The set of anchored markers have good coverage across
the genome.
+ The labels of the anchored markers are correct.
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Clustering chromosome groups

* The unanchored marker is assigned to the chromosome
group of the anchor marker with minimum 4 out of all
markers that have maximum @ of 0.25 and minimum LOD
of 3 (potentially linked markers).

+ If there are no potentially linked markers in the anchored
markers then the marker is linked to the unanchored
marker with the least 6 out of potential linked markers in
the unanchored group.

A supervised learning for chromosome assignment for genetic markers without a reference genome E. Tanaka, J. Taylor, B. Cullis



Linkage map

+ The linkage map is constructed using ASMap that wraps
the MSTMap algorithm [Wu et al., 2008a] in R keeping the
chromosome labels from previous steps.

Genetic map
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Linkage map
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Supervised learning

* The process is repeated for DH2 independently of DH1.

+ From the two linkage maps, the percentage of markers with
the same chromosome assignments out of all common
markers has a good concordance of 99.7% (3521/3530).

» These chromosome assignments are taken as new anchor
markers to assign chromosomes for the other 7 DH
populations.
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Linkage Map Statistics

No. of genotypes No. of markers

KUKRI x RAC875 157 6538
KUKRI x EXCALIBUR 133 6123
MACE x GLADIUS1 176 5049
RAC1548 x GLADIUS 132 5175
SCOUT x GLADIUS 369 5145
SCOUT x MACE 226 4947
AUS17840 x GLADIUS 124 5510
HALBERD x KENNEDY 122 6292

AUS17750 x GLADIUS 116 6155

A supervised learning for chromosome assignment for genetic markers without a reference genome E. Tanaka, J. Taylor, B. Cullis



Supervised learning

» These 9 linkage maps, consisting of approx. 14K markers,
are combined together into a consensus map using
MergeMap [Wu et al., 2008b].

+ The consensus map also provides a way to impute missing
genomic data for QTL analysis.

+ This map is also used for the QTL analysis to identify
approximate locations of potential QTL.

+ Furthermore the ordering of the map is exploited to
estimate a correlation structure to the marker effects...
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Supervised learning

» These 9 linkage maps, consisting of approx. 14K markers,
are combined together into a consensus map using
MergeMap [Wu et al., 2008b].

+ The consensus map also provides a way to impute missing
genomic data for QTL analysis.

+ This map is also used for the QTL analysis to identify
approximate locations of potential QTL.

+ Furthermore the ordering of the map is exploited to

estimate a correlation structure to the marker effects...
to be continued ...
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