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Aim
Aim
To investigate the loss of efficiency in genomic prediction for a
two-stage approach compared with a one-stage approach.

• One-stage approach is current practice at Australian Grain
Technologies (AGT) for selection of varieties.

• In contrast, most GS papers in wheat use a two-stage
approach [Scutari et al., 2013, Zhao et al., 2013,
Rutkoski et al., 2014, Bentley et al., 2014] whereby:

• a basic model or design based model is fitted in first stage
with some ignoring the pedigree information

• either the BLUPs, deregressed BLUPs, BLUEs are used in
second stage

• (in some cases, the means of the response per variety is
used for second stage)

A study of one and two stage analyses for genomic prediction of yield in wheat C. You, E. Tanaka, A. Smith, B. Cullis



Motivating Data Set

Image courtesy of AGT

An AGT breeding site testing more than 40,000 unique wheat
genotypes.

A study of one and two stage analyses for genomic prediction of yield in wheat C. You, E. Tanaka, A. Smith, B. Cullis



Motivating Data Set
• AGT data set contains more than 500 trials of various

stages in the breeding program with a mix of Stage 1-3.
• We present results based on 48 trials that are all in stage 3

of the breeding program.
• These trials have complete marker and pedigree

information for all varieties.
• Each trial is a rectangular array of 12 × 16 or 12 × 24, i.e.

a total of 192 or 288, plots.
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Motivating Data Set
• Each trial consists of 138-191 varieties.
• All trials employ a design with two blocks and either a

partial replicate [Cullis et al., 2006] or two replicates for
each test lines.

• We use a total of 17,305 SNP markers.
• The missing markers were imputed using k-nearest

neighbour.
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Motivating Data Set

• AGT’s current practice is to employ one-stage analysis
using factor analytic multi-environment trial (MET) for
selection of varieties with pedigree information
[Smith et al., 2001, Oakey et al., 2007].

• Within trial variation is modelled using first-order separable
autoregressive model denoted AR1×AR1
[Gilmour et al., 1997, Stefanova et al., 2009].

• In this talk, the results are from the analysis of single-sites.
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One stage analysis

y = Xτ + Zpup + Zg ((Mum + ue) + uā) + e

where
• y is the vector of observations
• τ is the vector of fixed effects
• up is the vector of random peripheral effects
• um, ue and uā is the vector of marker additive, marker lack

of fit, and non-additive genetic effects
• X , Zp and Zg are the design matrices for fixed, random

peripheral, and genetic effects respectively
• M is the matrix of marker covariates
• e is the residuals
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One stage analysis

y = Xτ + Zpup + Zg ((Mum + ue) + uā) + e

and we assume
up
um
ue
uā
e

 ∼ N




0
0
0
0
0

 ,


Gp 0 0 0
0 σ2

mI 0 0 0
0 0 σ2

aA 0 0
0 0 0 σ2

āI 0
0 0 0 0 R




where
• A is the pedigree numerator relationship matrix
• R has the AR1 × AR1 structure or variants of this such as

AR1 × ID
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Two stage analysis: Step 1 - 1 BLUPs with pedigree

y = Xτ + Zpup + Zgue
∗ + e

where
• y is the vector of observations
• τ is the vector of fixed effects
• up is the vector of random peripheral effects
• ue

∗ is the genetic effects and ue
∗ ∼ N(0, σ2

aA)

• e is the residuals and e ∼ N(0, σ2I)
• X , Zp and Zg are the design matrices for fixed, random

peripheral, and genetic effects respectively
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Two stage analysis: Step 1 - 2 deregressed BLUPs
with pedigree

• BLUP of ue
∗, i.e. EBV, is often deregressed

[Garrick et al., 2009].
• The deregression is applied as

dEBVi = ũ∗
e,i ×

1
(cor(u∗

e,i , ũ
∗
e,i))

2

where u∗
e,i/ũ

∗
e,i is the BV/EBV of i-th variety

• The de-regressed EBV is used as response for next stage.
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Two stage analysis: Step 1 - 3 BLUPs without
pedigree

y = Xτ + Zpup + Zgue
∗ + e

where
• y is the vector of observations
• τ is the vector of fixed effects
• up is the vector of random peripheral effects
• ue

∗ is the genetic effects and ue
∗ ∼ N(0, σ2

g I)

• e is the residuals and e ∼ N(0, σ2I)
• X , Zp and Zg are the design matrices for fixed, random

peripheral, and genetic effects respectively
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Two stage analysis: Step 1 - 4 deregressed BLUPs
without pedigree

• The deregression is applied as

dEBVi = ũ∗
e,i ×

1
(cor(u∗

e,i , ũ
∗
e,i))

2

where u∗
e,i/ũ

∗
e,i is the BV/EBV of i-th variety

• The de-regressed EBV is used as response for next stage.
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Two stage analysis: Step 1 - 5 BLUEs

y = Xτ + Zpup + Zgτg + e

where
• y is the vector of observations
• τ is the vector of (non-genetic) fixed effects
• up is the vector of random peripheral effects
• τg is the fixed genetic effects
• e is the residuals and e ∼ N(0, σ2I)
• X , Zp and Zg are the design matrices for (non-genetic)

fixed, peripheral random, and genetic effects respectively
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Two stage analysis: Step 1 - 6 raw means

No model - simple average of response per variety.
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Two stage analysis: Step 2

ỹ = 1µ+ Mum
∗ + ε

where
• ỹ is the output from step 1
• µ is the intercept
• um

∗ is the marker additive effects
• ε is the residuals and we assume ε ∼ N(0, σ2I)
• M is the matrix of marker covariates
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Simulation

• We simulate responses rather than apply cross validation
as this way the true breeding value is known.

• For each trial we keep the original design and generate the
data from the best model for that trial.

• For one stage analysis, we fit the model that matches the
data generation model.

• For two stage analysis, we use the EBV from “models”
proposed previously as response for next stage.

• This is repeated 200 times for each trials.
• We measure accuracy as the correlation of the predicted

BV as from one-stage or two-stage analysis.
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Result
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Result
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Conclusion

>

• Our simulations show that the one-stage analysis has a
clear advantage over two-stage analysis for prediction
accuracies.
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Future Research

• Incorporate a model selection process for one-stage
analysis.

• Extend these results to MET to account for Genotype ×
Environment.
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